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ABSTRACT

We describe the design of a system of compact, wireless
sensor modules meant to capture expressive motion when
worn at the wrists and ankles of a dancer. The sensors form a
high-speed RF network geared toward real-time data
acquisition from multiple devices simultaneously, enabling a
small dance ensemble to become a collective interface for
music control. Each sensor node includes a 6-axis inertial
measurement unit (IMU) comprised of three orthogonal
gyroscopes and accelerometers in order to capture local
dynamics, as well as a capacitive sensor to measure close
range node-to-node proximity. The nodes may also be
augmented with other digital or analog sensors. This paper
describes application goals, presents the prototype hardware
design, introduces concepts for feature extraction and
interpretation, and discusses early test results.
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1. INTRODUCTION

Several wireless interfaces have been developed to capture
dance gestures over the last decade or two. Some have been
sensor systems built into shoes, such as the 1980’s
Taptronics, featuring piezoelectric pickups at the toe and
heel [1] and Expressive Footwear by our group at the MIT
Media Lab [2]. Originally realized in 1997, this system was
an early implementation of a dense, multimodal wireless
sensor cluster (now becoming common in sensor networks)
that measured 16 variables including many degrees of both
contact and free-gesture control. Other examples of wearable
dance instrumentation typically use bendable sensors that
span primary joints such as the elbows and knees.
Architectures of this sort have been introduced by DIEM in
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Aarhus [3] and by Mark Coniglio of Troika Ranch in New
York [4]. Although these systems have become wireless,
they employ a single radio in a beltpack or backpack, hence
the various sensors need to be tethered across the body to
this central dispatcher. Extreme versions of these types of
wearable joint-bend interfaces can be found in full-body
motion capture outfits for computer graphics, and flexible
fiber-optic angle-sensing systems such as ShapeWrap by
Measurand [5].

The systems above were developed for single subjects, and
many do not scale well to ensemble performances. For
instance, the bandwidth of the Expressive Footwear system
was limited 60 Hz full-state updates for two shoes.
Furthermore, no provision was included to sense upper body
or arm motion. Some of the centralized backpack systems
enable more than one dancer to be accommodated, but the
wires running from various sensor locations to the central
body-worn transmitter are cumbersome.

Another approach to gesture tracking for dancers avoids any
body-worn hardware by exploiting computer vision,
processing video from a camera or cameras watching the
stage. This technique is now well established, and platforms
like the Very Nervous System [6], Eyes Web [7], Big Eye,
and Jitter are used by many composers. The prevalence of
optical tracking methods has even prompted some artists to
develop their own video analysis tools, e.g., [8,9]. This
approach is processor intensive, and although the underlying
technology and algorithms are steadily improving, computer
vision is further limited by constraints on lighting and
choreography; robustness to occlusion and background noise
remains problematic. Hence, obtaining multiple relevant
features reliably from a dance ensemble in a performance
setting can be difficult.

Accordingly, we have developed a system of compact
wireless inertial sensors that can be worn on the hands and
feet of a group of dancers to enable real-time gesture tracking
over the entire ensemble. This approach has advantages over
other techniques in that each point of measurement has a
dedicated wireless connection, the system easily scales to a
flexible number of performers and number of points of
measurement on the body, does not suffer from occlusion,
and provides sensor data which is immediately relevant to
features of human motion.

2. GOALS

The motivation for this project is the recent opportunity to
leverage low-power, high-bandwidth RF solutions and
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compact inertial sensors to create a wearable wireless motion
sensing system meeting the demands of many points of

ble, which is in some ways an ideal situation for pushing
high performance requirements. A highly active environment
of human motion demands an unrestricting yet sturdy
wearable design. Obtaining detailed information about the
movement of the human body and the interaction of multiple
human bodies demands many points of measurement. Most
importantly, using this information as a vehicle for
interactive performance, specifically with musical feedback,
demands rapid data collection and analysis to achieve a
response with a sufficiently low latency. In the broader
scope, we hope to test the applicability of this system to
other applications, such as analyzing the dynamics of team
sports, physical therapy, biomotion measurement and
analysis, or personal physical training.

3. HARDWARE DESIGN

The current hardware design has its roots in the Stack [10], a
modular system, including full IMU card, developed by our
research group several years ago as a compact and
customizable alternative to our earlier Expressive Footwear
design. However, the data radio used at the time was limited
to only 115 kbps, far too low for our application. Assuming
we would like to outfit an ensemble of five dancers wearing
sensors on wrists and ankles, with full state updates at
100Hz, the inertial sensors alone generate:

6sensors x 12bits/sensor x 20nodes x 100Hz = 144kbps.

If we wish to transmit additional information from the
capacitive sensors, and account for the increased overhead
costs associated with sending small frequent packets for low-
latency, five dancers could easily require up to 400kbps in
practice.

Although compact sensor clusters have been developed at
other institutes, none have the characteristics that we need in
terms of combining low power and small size with such high
data rates. Motes are quite established for sensor networks,
but most support mainly peer-peer routing at lower data rates
than needed here. Likewise, the Smart-Its and its descendants
[11] are designed to work at data rates similar to the Stack.
Flety and collaborators at IRCAM [12] have built wireless
sensor networks that use a similar transceiver as used in the
Stack (and hence also exhibit limited data rate) and others
that use the WiFi 802.11 standard, which tends to be much
too power hungry for efficient continuous operation with a
modest battery. Emmanuel Tapia of the MIT Media Lab has
designed very compact wireless accelerometer sensors
capable of higher data rates [13], but our application requires
more sensor degrees of freedom.

The design presented here includes a full six axis IMU, node-
to-node capacitive proximity sensing, and flexible
expansion capabilities, combined with a low power 1Mbps
radio. The sensor node (Fig. 1) measures 4cm x 4cm x 2cm,
not including the protruding antenna and external battery
pack. As shown, with the battery included, the weight is
approximately 45 g. We chose to decouple the battery from
the main circuit board, so that it could be affixed to the strap
rather than adding to the bulk of the sensor package. This
makes the node more comfortable to wear, provides easy
access to the battery, and allows for flexibility in the choice
of battery pack.

measurement and high data rates. Our goal is to implement
such a system for an interactive dance ensem

The nRF2401A data radio we utilize is a small, low power,
2.4 GHz device providing up to 1Mbps data rates. Our
communications protocol is a TDMA scheme [14] in which a
basestation polls the network for data at the sampling rate,
and each node responds within a preprogrammed time slot.
The basestation then transmits the data to a central computer
via USB for processing. Using this scheme, one basestation
can handle full state updates at 100Hz for over 25 nodes. This
is a significant performance improvement over previous
designs. The workable RF range on these devices appears to
be on the order of 50 feet, depending on the local RF
environment.

Figure 1. Sensor node on wrist (upper left), removed (upper
right), and exposed circuit board (bottom).

The IMU is made up of Analog Devices ADXRS300 rate gyros
and ADXL.203 accelerometers, as well as associated analog
circuitry. Sensor signals are collected by the 12-bit analog to
digital converter built into the onboard processor, a TI
MSP430F14x. This microcontroller was favored because of
its low power consumption, capable A/D, and ample I/O, as
well as its use in several of our group’s ongoing projects.

The node-to-node capacitive proximity sensor operates by
alternating transmit and receive modes on each of the sensor
nodes, with only one node transmitting at a time, while the
body is grounded. Because of timing constraints, it is not
feasible to record measurements for every pair of nodes;
rather, several simultaneous transmit nodes and several
concurrent receive nodes can be selected in software. During
transmit mode, the microcontroller drives an LC oscillator,
which generates a high amplitude pulse (tens of volts peak-
to-peak) at 91 kHz. During receive mode, the pulse is picked
up by the receiving node, amplified, and sampled in
quadrature to estimate its amplitude without the need for
phase coherence. The nodes are able to use the same electrode
for both transmit and receive modes, thanks to an efficient
amplifier circuit inspired by the School of Fish, an electric
field sensing tool designed several years ago by a former
Media Lab student [15]. Capacitive sensing requires an
electrode with sizeable area — this could possibly be
integrated into the strap securing the sensor package to the



body using highly conductive textiles such as Bekiweave
[16].

Additional capabilities include a free digital input for
interfacing with a Polar heart rate monitor, a free SPI
interface for connecting with other digital devices, and a free
analog input with associated signal conditioning circuitry
for handling an additional resistive sensor, such as a pressure
sensor, bend sensor, or light sensor. All of these optional
signal lines are broken out to a compact expansion port,
which also acts as the programming interface.

Power consumption is always of prime importance in the
design of wireless devices; the power source tends to be the
largest and most cumbersome component of the system.
Unfortunately, our desire to operate continuously with three
rate gyros prevents this design from meeting traditional low-
power requirements. Each gyro may consume up to 30mW,
and their slow setup time prevents them from being power
cycled. The data radio is also comparatively power hungry,
consuming up to 60mW in receive mode and 40mW in
transmit mode, but this can be managed in code by
minimizing the amount of time spent in active modes.
Ultimately, we chose to operate the system with lithium
polymer batteries because they are lightweight, compact, and
rechargeable. With two compact 145mAh cells in series, as
pictured above (Fig. 1), the node can operate for four hours
on one charge.

4. RESULTS

The major advantage of having enough bandwidth to operate
multiple sense points on multiple wearers simultaneously is
the ability to obtain detailed information about correlated
activity within a group. In the context of a dance ensemble,
time and spatial correlations can be used to determine which
dancers are moving together, which groups are leading or
lagging, or perhaps which dancers are responding to one
another with complementary movements. With this in mind,
our preliminary analysis focuses mainly on the feasibility of
extracting simple features that can be used to describe general
group dynamics.

4.1 Correlated Motion

Previous work has shown that cross-covariance can be used
to express both time separation and spatial similarity of
gestures performed by multiple users [17]. For example,
Figure 2 illustrates pitch gyro data for the hands of three
subjects performing a similar gesture in sequence. The
locations of the peaks in the associated cross-covariance
curves (calculated with respect to subject 1) give the time
lags between the three events. In addition, the height of a
peak gives a measure of how well the signal shapes are
correlated. In this way, we can also obtain a sense for the
spatial similarity of the events. Here, subject two does a
slightly better job at mimicking the motion of subject one.

One problem with cross-covariance as a feature is that it
requires a complete segment of data to calculate. In a
streaming situation, windowed cross-covariance must be
used, where the window size is chosen to make a tradeoff
between latency and the maximum time separation that can
be expressed. A feasible use of cross-covariance requiring a
short window might be to follow how closely dancers
synchronize to music or to a leader, where the delays between
their correlated motions are expected to be within a second.
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Figure 2. Raw data for hands raised and lowered in
sequence (only the pitch gyro is shown) and resulting
average cross-covariance.

To test this idea, six sensors were given to three dancers
participating in a ballet lesson; each wore one on the right
wrist and one on the right ankle. The class then performed an
exercise involving a repeated sequence of leg swings
executed in unison, to music. Although they were roughly in
time with the music, the dancers were not necessarily
looking at each other or at an instructor, creating a small but
clearly visible delay in their motions (the rehearsal was
documented on video for reference). Figure 3 shows a portion
of the raw data collected from the leg of each dancer. Because
there was very little arm motion associated with this
exercise, only leg motion is discussed here. The area from
about 35 to 65 seconds corresponds to the synchronized
sequence of swings made with the right leg.
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Figure 3. Selected raw data from the ankles of three ballet
students performing a sequence of leg swings in unison.

Figure 4 shows the result of windowed cross-covariance
analysis on this data segment with a window size of 1 second
and a step size of 0.25 seconds. That is to say, at each
interval of 0.25 seconds, a window of data was considered,
the cross-covariance vector was computed individually for
each sensor value, and then the individual vectors were
averaged to produce a result. Note that the area of peak cross-
covariance, shown in white, tends to waver around the
baseline as time progresses. This is consistent with the
dancers slowly leading and lagging with respect to one
another by small amounts. Because the step size is small
enough, individual leg swings and their synchronicity across
the ensemble can be picked out. It is clear from the relatively



stable middle plot that Dancer A and Dancer C were closely
synchronized for the duration of the exercise, while Dancer B
fluctuated from about 0.3 seconds ahead of Dancer A to 0.3
seconds behind Dancer A. This fluctuation reflects accurately
what is visible in the video. Interestingly, it turns out that
Dancers A and C were facing each other during the exercise,
while Dancer B had her back turned to the others.
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Figure 4. Windowed cross-covariance (averaged across
sensor values) between pairs of dancers, for the data
segment presented in Figure 3.

4.2 Quantifying Activity

In addition to extracting correlations between the activities
of a group, it is important to obtain information about the
properties of the activities being observed. These properties
might include variations in the overall activity level of an
individual or group at different time scales, principal axes of
movement, or other features extracted during an interval of
high activity.

One approach to activity measurement involves computing
the average running variance for various combinations of
sensors on individual nodes. If the separation between
gestures is long enough, variance spikes can be used to
delineate them. In other cases it might be useful to use a
lowpass filter to obtain an envelope on the running variance,
in order to determine slower trends in the activity level. For
example, data was collected from the right wrist and ankle of
a ballet student performing a sequence of motions in which
slow kicks with the right foot transitioned into fast, tense
kicks (in ballet terminology, petit battement). The full
sequence is framed with a stylistic tension and release of the
right arm at the beginning and end, respectively. Figure 5
shows a portion of the raw data from this segment along with
four different activity envelopes obtained from the windowed
variance of both upper and lower body movement.
Accelerometer activity here denotes the average variance
across the accelerometer axes, while rotational activity
denotes the average across the gyro axes. One can clearly see
a marked increase in activity as leg motion transitions to
faster kicking. The role of the arm movement is apparent in
the activity envelope as well.

Similar conclusions can be drawn from figure 6, which
illustrates the activity envelopes of leg motion for each
dancer during the period of correlated activity highlighted
earlier in figures 3 and 4. Two areas of peak activity across
the ensemble appear around 50 and 60 seconds into the

sample, corresponding to repeated leg swings over the full
range of motion from front to back and back to front. The
general trend of activity is increasing over the segment from
30 seconds to 60 seconds, as the instructor urges the dancers
to make each leg swing “successively higher”. Finally, we
see activity for Dancer B in the interval from 10 to 20
seconds that is not reflected in the movements of the other
dancers, corresponding to a few “warm-up” leg swings by
Dancer B. Comparison of the activity levels is all that is
required to flag this unique period of activity, at which point
it could be analyzed more closely, or used as evidence that
Dancer B should be clustered in a different subgroup from
Dancers A and C. Note that the cross-covariance analysis
shown in figure 4 is unable to compare the warm-up leg
swings with motion occurring later in time, because the
window is only 1 second long. Given enough storage and
computing power, one solution is to save interesting data
segments for correlation with future data, or to monitor
running cross-covariance on multiple time scales.
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Figure 5. Selected data and resulting activity envelopes as
dancer transitions from slow kicks to rapid tense kicks.
Sequence of leg motions is framed by stylistic arm motion.
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Figure 6. Activity envelopes for the synchronized leg
movement highlighted in Figures 3 and 4.

Looking at figure 5 and 6, it would seem as if there is no
reason to distinguish between accelerometer and gyro
activity. Indeed, sensor activity on a single node is often
highly correlated, because human motion is unlikely to occur
along only one axis. The accelerometers are also subject to



gravity and centripetal acceleration, so rotations will be
picked up strongly in some cases. It should be possible to
use the gyro signals to help isolate translational acceleration
from other types of movement picked up by the
accelerometers. However, if one wishes to identify specific
classes of activity, it may be more important to compare
motion along each axis than rotational versus translational
motion. One approach is to keep track of which sensor has
the highest variance on each node or on each individual, with
the goal of analyzing activity one person at a time. A more
efficient approach might be to create a group feature such as
mean activity on each sensor axis, for each limb, across the
entire ensemble, to determine the predominate axes of
collective motion.

For example, figure 7 demonstrates the results of a group of
three people raising and lowering their right hands in
unison. The bottommost plot indicates the variance on each
sensor axis for the right arm, averaged across all three
subjects. Note that the average variance of the pitch gyro
dominates. This supports our intuition that the act of raising
and lowering the hand involves mostly a rotation in pitch.
Extracting this information from average windowed variance
may simplify the task of detecting specific gestures by
determining which sensor signals are most important, or by
defining a subgroup that is performing a similar gesture
before applying heavier analytical techniques. One can also
imagine a situation in which the correlation measurements
discussed above are desired, but it is unclear who should be
interpreted reasonably as a “reference” for the rest of the
group. By comparing the average group variance to the
individual variance, one can determine if the motions of a
specific subject are characteristic of the entire group, or lie
outside the norm.
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Figure 7. Right arm pitch gyro signals and windowed
variance averaged across subjects for each sensor axis, as
hands are raised and lowered in unison.

4.3 Capacitive Sensor

One of the limitations of small-scale inertial sensing is that
it is extremely difficult to obtain a reference frame for any
sort of position tracking. Yet, the shape of the body may be
a more intuitive communication tool than the dynamics of
the body. To supplement inertial data with information even
as simple as “arms together” and “arms apart” would add
significant depth to the interface. This was the idea behind
the node-to-node capacitive proximity sensor.

Initial performance evaluations have determined that the
capacitive system suffers from a very nonlinear response,
which, coupled with high noise levels, limits its useful range
(Fig. 8). Despite this, nodes grounded through the user’s
body can be sensed up to a spacing of 30cm with a 16cm’
electrode. Nodes that do not share a ground, i.e. worn by
different individuals, have reduced range but can still be
detected. Past attempts at similar sensing systems have
achieved better range, possibly due to higher voltage output
on the transmitting electrode [15,18]. It may thus be
possible to improve the performance with minor
adjustments.
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Figure 8. Typical response of the capacitive sensing
system.

In the current version, because of the reduced sensitivity
beyond about 5cm, it may not be efficient to transmit a full
12-bit value for every capacitive measurement. Rather, the
signal should be compressed to fit a range of 8 or fewer bits
with a more linear response. Another possibility is to use the
existing response to form a simple one-bit indication of
close versus distant. Until improvements can be made, this
scheme fulfills the minimum requirements. In either case,
data reduction will enable the transmission of capacitive
measurements from more nodes without compromising the
bandwidth available for higher priority sensor data.

S. GENERATING MUSICAL FEEDBACK

To demonstrate the utility of the system as a multi-user
interface for interactive performance, it will be necessary to
map extracted activity features to musical sound in a
satisfying way. In a traditional free gesture interface, each
degree of freedom might be mapped directly to a specific
continuous control or set of event triggers. In this system,
however, there are at least six degrees of freedom per node
provided by the inertial sensors, and typically four nodes per
user, making direct mapping impractical. Taking the first
step towards a practical strategy for musical mapping in this
framework, we have been focusing on forming descriptions
of motion at the group level rather than at the individual
level. As suggested above, simple group features can express
a whole range of useful information, such as who is leading
and who is following, degree of correlation across the
ensemble, changes in activity level across the ensemble, the
existence of subgroups or clusters within the ensemble that
could be considered separately, principal axes of activity



within subgroups, the location of an event unique to one
individual, or relationships between levels of upper body
motion and lower body motion. In turn, the treatment of the
ensemble as an organic unit offers new possibilities for
musical interpretation.

However, the potential amount of information expressed by
these group features alone is still too large for a direct
mapping to music. The problem can be simplified by
interpreting group dynamics in the context of a specific
piece. For example, the music can be generated from a loose
framework or score designed alongside the choreography. At
a given point in the score, one may be looking for a specific
set of possible changes in the dancers’ movements that
signal musical events such as changing timbral qualities, the
entrance of a new melodic line, or a shift to a new section. By
placing contextual limits on the decision space, pattern
recognition algorithms can be trained on a specific
performance to streamline the control process. Although the
dancers do not actually generate music directly under this
model, they are able to freely control their progression
through sections of the score, alter their interpretation of the
context, and add embellishments. This approach should
provide a balance between musical continuity and the sense
of causality between the movements of the dancers and the
generated sound, which is essential for an engaging
interactive performance.

One limitation to address is the fact that many of the features
discussed in this paper are slowly varying, or have a
significant amount of latency associated with them. This is
unsuitable for triggering sudden events or percussive sounds,
as the human tolerance to latency in this case is quite low. It
may be possible to train a state-based gesture-tracking model
that would allow for rapid activity detection by predicting
future states, but applying a simple threshold on one or more
continuous features may be a better option.

6. CONCLUSIONS & FUTURE WORK

In this paper, we have presented a compact, wearable sensor
system enabling real time collective activity tracking for
interactive dance. The sensor node comprises a full 6-axis
inertial measurement unit with supplementary capacitive
node-to-node proximity sensing. Preliminary results
demonstrate that our design is viable for analyzing a wide
range of collective activity parameters in a dance setting. As
the current +=1.7g accelerometer was found to have
insufficient range to capture certain quick motions, it will be
replaced by the x10g ADXL210E. We also hope to increase
the range of the capacitive sensor. Future work will focus on
adding to the feature set developed here, assessing real-time
operation with special attention to low-latency requirements,
and developing a more specific framework for music
generation with implementations in Max/MSP or PD.
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