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Abstract We have designed a highly versatile badge

system to facilitate a variety of interaction at large profes-

sional or social events and serve as a platform for con-

ducting research into human dynamics. The badges are

equipped with a large LED display, wireless infrared and

radio frequency networking, and a host of sensors to collect

data that we have used to develop features and algorithms

aimed at classifying and predicting individual and group

behavior. This paper overviews our badge system, describes

the interactions and capabilities that it enabled for the

wearers, and presents data collected over several large

deployments. This data is analyzed to track and socially

classify the attendees, predict their interest in other people

and demonstration installations, profile the restlessness of a

crowd in an auditorium, and otherwise track the evolution

and dynamics of the events at which the badges were run.

Keywords Electronic badge � Wearable sensing �
Wearable computing � Social dynamics

1 Introduction

Electronic badges have a rich history that dates back circa

15 years to the dawn of ubiquitous computing. These first

electronic nametags, pioneered by Olivetti Research as the

‘‘active badge’’ [1], were very simple platforms that peri-

odically transmit a modulated infrared (IR) identification

(ID) code to the vicinity, enabling people to be located by

an infrastructure of embedded networked IR readers as they

moved about a facility. Other approaches used the badge as

a dynamic display and as a facilitator for person–person

interaction at large events. This direction was taken by two

mid-90s research projects at the MIT Media Lab—the

‘‘Thinking Tag’’ [2] (an electronic ‘‘icebreaker’’ that flashed

red/green LED’s according to agreement of proximate

wearers on a series of provocative questions) and the

‘‘Meme Tag’’ [3], which featured a large LCD display that

enabled users to selectively exchange brief catch phrases (or

‘‘memes’’) that were tracked as they propagated through

large groups.

Badge platforms have subsequently moved into the

commercial world, with systems like the Matchstick and

the Japanese Lovegetty [4]—similar to the Thinking Tags,

these were designed as matchmakers for nightclub envi-

ronments. A subsequent badge, designed primarily in

collaboration between Georgia Tech and Charmed
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Technologies [5] was a product aimed at facilitating con-

ference events. In addition to similarly displaying affinity

by flashing red/green according to preloaded profiles, the

CharmBadge subsequently gave attendees a log of the

other badged people and IR-tagged exhibits they appeared

to be most interested in, determined primarily by integrated

IR encounter time. A more recent product, the nTAG [6],

was also designed to facilitate business meetings and

conferences. It features a 128 9 64 pixel, back-lit LCD

display, a trio of navigation buttons, and both IR and

quasipassive radio frequency (RF) backscatter communi-

cation—the IR is for line-of-sight communication with

other badges and fixed beacons, while the backscatter

system allows the badge to upload data to microwave

beacons when it is \20 feet from them. The IntelliBadge

[7] is also intended for conferences, but as it is only

essentially a hybrid inductive/RF ID tag, it is unable to

display information or store state—the responsibility of

tracking the tags is moved off the badge and onto the

networked infrastructure of fixed readers. A current Swiss

product called ‘‘SpotMe’’ [8] has many features for facil-

itating group interaction (e.g., locating people via RSSI

zoning, messaging, etc.), but is designed as a handheld

PDA rather than a wearable badge. These products target

applications such as tracking people through a convention

hall, detecting what booths they visited or were most

interested in, and (especially for the nTAG), exchanging

virtual business cards and encouraging inter-attendee

interaction.

Badges and other wearable or mobile platforms are

increasingly used to infer and facilitate social interaction

using measurements based solely on proximity. Some of

these systems (e.g., [9]) are minimal IR transceivers that

hearken back to Olivetti’s Active Badge, while others are

simple RF beacons running on mobile devices [8, 10] or

Bluetooth-enabled cell phones [11]. A recent badge called

the ‘‘Life Thermoscope’’ from Hitachi Research was

inspired by our work—it contains a suite of sensors, such

as an accelerometer and a thermometer, and logged data

from these badges is analyzed to infer relevant patterns in

the user’s activity [12].

While badge platforms have evolved considerably

since their inception at the beginning of the 90s, their

recent manifestations have been aimed more at niche

commercial markets rather than research. The system

described in this article has been designed to support both

directions. We have developed a very versatile platform,

termed the ‘‘UbER-Badge,’’ geared toward enabling a

variety of user interactions at large events while collect-

ing a rich suite of multimodal sensor data that can be

used to analyze, explore, and respond to the structure and

evolution of ongoing social dynamics. The UbER-Badge

encompasses an extreme mix of capabilities not available

in prior badge platforms, such as surveyed above. Fea-

turing both line-of-sight IR and omnidirectional RF

communication links, the badges form a large wearable

sensor/actuator network.

2 The UbER-badge system

A final-generation production badge is shown in Fig. 1. An

early prototype system was introduced in [13] and details

on the current badge’s hardware and software can be found

in [14]. A complete UbER-badge (including frosted plastic

faceplate) measures 11 9 12 cm, and weighs about 170 g

with all four AAA batteries installed. At an average current

of about 100 mA, badges last for roughly 15 h of contin-

uous use. In quantities of 300, the cost of an assembled

badge runs roughly US $85, not including a case or front

panel.

The badge’s display was designed to show simple

iconographic animations and bright scrolling text that can

be easily read in any lighting condition across several

meters (its hard to read the LCD panels used with existing

badges at any significant distance or outdoors). Accord-

ingly, the badge was equipped with a 5 9 9 LED matrix

driven by a dedicated controller capable of independently

Fig. 1 A UbER-Badge worn around a users’ neck with animated

LED graphics
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specifying the intensity of each LED. In addition, 4

brightness-controllable blue LEDs below the matrix pro-

vide another channel of visual output. To support appli-

cations that require the display of larger messages or more

data, the badges are equipped with circuitry and connec-

tions to drive a large backlit alphanumeric LCD display

that can be mounted beside or atop the LED matrix.

Another connector is provided to support a narrow LCD

that can be mounted on the top of the badge, allowing the

viewer to see personal messages without rotating the badge

to inspect the front. Although test badges were assembled

with these additional displays, they were omitted from

production units because of added cost, weight, and size.

Each badge can provide tactile feedback (typically felt

on the neck through the badge’s lanyard) via a pager-style

vibrating motor. A side mounted switch (providing up,

down, and push-to-select) and a pair of easily accessible

buttons on the lower front of the badge (see Fig. 1) are used

for user input. An onboard microphone is connected to a

12-bit audio input, and a 12-bit monaural audio output is

available at a headphone jack. Each badge also includes a

2-axis, ±2G accelerometer to sense user motion and an

ambient light sensor. Each badge is currently equipped with

2 MB of flash memory to enable the continuous recording

of sensor data across the duration of a day-long event.

The badges were hung on conventional polyester lan-

yards with hooks allowing for easy put on and take off. The

tops of the badges were typically suspended 13 cm below

the user’s chin. This placed the badge close enough to the

user’s face such that their own voice generally dominated

the microphone signals without the badge’s proximity

become annoying or cumbersome. The short lanyard also

limited the amount of free swinging of the badge,

improving the veracity of the accelerometer data.

The badge is equipped with an IR channel (875 nm

modulated at 38 kHz) to support face-to-face and local

communication. Badges can notice each other via the IR

channel out to 3 m and across large angles (e.g., 60�).

People facing one another in small groups can be reliably

detected, and a group sitting around a table could be

identified by transitively linking all badges that are noticed

within a short interval. All badges broadcast a packet

containing a unique ID code through their IR port to alert

other nearby facing badges and squirts (see Fig. 2) of their

presence. Although the average interval between IR pulses

is 1 s, it varies by up to 25% from shot to shot to avoid

persistent collisions. When a pair of badges (or a badge and

a squirt) detects each other via IR, an ‘‘encounter’’ is

defined between them. The length of this encounter is

monitored—the encounter is declared over when the other

badge or squirt is not detected for at least 30 s.

The badge also sports an RF section [15] to support

higher bandwidth, non-line-of-sight communication across

larger distances. It is based around the Chipcon CC1010

radio chip, which contains a processor and RF transceiver

set to run at 433 MHz with programmable transmission

strength. The CC1010 software implements a peer-to-peer

random access network using a carrier-sense method of

media sharing and collision avoidance (CSMA). Using a

simple wire monopole antenna, easily tucked behind the

badge in its case, the badge’s indoor RF range has been

tested out to 100 m.

Infrared beacons called ‘‘squirts’’ were used to tag fixed

locations, typically research demos running during the

open house portion of the meetings at which the badges

were used. The squirts are 2.5 9 5 cm in area and run off a

pair of AA batteries for a week. They broadcast a byte of

ID at over 1 Hz to nearby badges (up to roughly 2–6 m

away) to inform them of the squirt’s proximity. As the

location of all squirts is known, they serve to roughly

localize the badges. Badge wearers can also ‘‘bookmark’’

the demo associated with a squirt by pushing a button on

their badge when it is in IR range of the squirt (indicated by

the squirt’s visible LEDs), an event that is logged in both

the memory of the badge and squirt. As shown in Fig. 2,

the squirts were generally fixed to a large placard that was

posted near each demo in order to attract the attention of a

nearby badge wearer in case he or she is interested enough

in the project to register a bookmark.

Most data packets broadcast by the badge’s RF system

are not multihop routed across badges—instead, all badges

directly radio a network of fixed base stations, each

Fig. 2 A demo placard with a ‘‘Squirt’’ (a compact IR tagging

beacon) at lower right
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plugged into the building’s hardwired LAN. Six of these

base stations were able to cover all three floors of our

building and adequately cover other venues where we ran

this system—participants were always within range of at

least one base station.

The base stations enable PC-based kiosks and clients to

query, command, synchronize and monitor the badges from

anywhere on the Media Lab’s network without the badges

bearing the overhead of badge–badge routing. Each badge

sends a data payload every minute containing the ID’s of

other badges and squirts that they encountered via their IR

channel since the last payload was sent. This packet is

received by the base stations and sent to the kiosks and

other real-time data processing servers. Badges can be

coarsely localized by keeping track of the base stations that

they see—most applications, however, use the most recent

IR encounters with fixed squirts for this.

The badge continuously samples and logs signals from the

accelerometer and microphone. Accelerometer readings are

taken at 100 Hz, and an average absolute sample for each of

the two dimensions (ACCx, ACCy) is computed and recorded

every 25 samples (4 Hz). Microphone signals are acquired at

a rate of 8 kHz and averaged every eight samples, yielding a

down-sampled rate of 1 kHz. These averaged readings are

used to create two different parameters with different char-

acteristics. The first is the average amplitude (AUDAMP), and

we calculate it by accumulating the absolute value of the

averaged readings and dividing the sum by the frame size.

The second measurement is the average difference between

the 1 kHz averaged readings (AUDDIF), yielding a high-pass

response. Similar to the average amplitude, we accumulate

the differences between successive averaged readings and

divide by the frame size. The frame size for our implemen-

tation was 256 samples, producing a final audio feature-

sampling rate of 3.91 Hz. The aforementioned sampling

rates produce an upper bound of about 13.5 h of data

recording time before the 2-MB flash memory on the badge

fills up—certainly ample time to outlast a day-long event.

When not displaying messages or information, the badge

display goes into a ‘‘pilot light’’ mode to indicate that the

device is active, quiescently showing a dot that bounces

around with the user’s motion, driven by the accelerometer

data.

3 Interactive applications

After testing and evaluating an earlier prototype badge

design [13], we fabricated 200 of the finalized UbER-

Badges described here, together with a similar number of

squirts, and deployed them at a couple of large research

consortium meetings hosted at the Media Laboratory (in

October 2004 and May 2005) and, in collaboration with

one of our industrial partners, at a career fair for high

school students in Scotland during September 2005. These

events all involved on the order of 100 simultaneously

badged individuals and 100 distributed, squirt-tagged

demos. A variety of applications, as outlined below, ran on

the badge system in order to facilitate many types of

interactions between attendees. The events at the Lab

consisted of two different environments, namely structured

talks in an auditorium and an extended freeform ‘‘open

house,’’ where participants could explore the Media Lab-

oratory at will. The career fair was entirely an open house.

3.1 Bookmarking demos and exchanging virtual

business cards

Attendees were instructed to ‘‘bookmark’’ when they

encountered either another badge wearer with whom they

wished to exchange contact info or found an interesting

Squirt-tagged demonstration that they desired to remember

or investigate further. After the conference, bookmarks

were downloaded from the badges and reported to the

corresponding users, facilitating further contact with col-

leagues and deeper exploration of projects in which they

expressed interest. The bookmarking process was very

simple and intuitive. When a badge comes into IR range of

another badge, the blue lights on both badges cycle—

similarly, when a badge is within range of a squirt, LED’s

on the squirt will glow. From this state, pushing any button

on the badge will bookmark the ID of the other device.

This process is visually verified by animating a checkmark

on the other badge (Fig. 3) or flashing a LED on the squirt.

Analyzing the bookmark data also provides a very direct

way to find groups that have common interests. Figure 4,

for example, shows a scatter plot of the bookmarks that

students gave to different vendors who were present at the

high-school career fair—the distance between the plotted

dots corresponds to the commonality of the bookmarks that

Fig. 3 The badge at right has bookmarked the badge at left by

pushing a button–blue LEDs at the bottom of the badges signify an

encounter in progress and the checkmark verifies the bookmark
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they received (vendors who tended to receive bookmarks

from the same group of people are plotted closer together).

Aside from a dense group of vendors near the center who

received significantly fewer bookmarks, we tend to see

vendors naturally group in topical clumps, as indicated in

the hand annotation. Note that the Media Lab and Army

received significant numbers of bookmarks, but were iso-

lated islands opposite one another, indicating that they had

few bookmarkers in common.

3.2 Displaying public messages

Computers running the badge management software (used

by the meeting administrators) were able to command all

badges to repeatedly scroll a cached or custom text mes-

sage. This was used to get attendees back into the audito-

rium for the next round of talks, inform them that food was

being served during the Open House, tell the high school

students that their bus was here (Fig. 5), etc.

3.3 Displaying personal messages

Badge kiosk PCs distributed around the building running

GuideStar software (described in the following section) could

be used to send a message to one particular badge via the RF

basestation network. When the text is received, the badge’s

vibrator pulses repeatedly to inform the wearer that a message

is queued. The messages must be retrieved on another badge

by getting within IR range and pushing any of the badge

buttons. We opted not to allow users to retrieve messages on

their own badge, since looking down at your badge is some-

what awkward and approaching a colleague for revealing your

message tended to foster sporadic social mixing.

3.4 Finding people

Badge-wearers can be physically located via two tech-

niques. One involves simply querying one of the GuideStar

kiosks with the wearer’s name—a location based on the

most recent squirts noticed by the quarry’s badge is plotted

on a building map. In another more interactive approach, a

badge kiosk implants the ID of the quarry’s badge into the

seeker’s badge. When the seeker presses a button within IR

range of another badge, that badge displays a pattern that

illuminates a number of LED’s in inverse proportion to the

time elapsed since it last encountered the quarry. If the

seeker holds the button down, the request is sent through

the radio, causing all badges in the vicinity to appropriately

display. By following the trail of ‘‘brighter’’ badges, the

seeker is led toward his goal.

3.5 Affinity group display

During the Media Lab events, the encounter and book-

marking data that were continually offloaded from the

Fig. 4 Distribution of vendor

bookmarks at the high-school

career fair, with their separation

corresponding to the number of

bookmarkers in common—

vendors plotted closer together

are bookmarked mainly by the

same individuals, whereas

widely separated vendors are

bookmarked by primarily

different groups

Fig. 5 Public messages scrolling across badges
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badges were used to build affinity models that evolved as

the day unfolded. Badge wearers were dynamically clus-

tered into one of five groups that were defined by com-

monality of behavior (Fig. 6)—as anticipated, members of

the same company often end up in the same group. After

this model became somewhat stable by the end of the day

(by the time the evening reception began), an animated

icon corresponding to the wearer’s affinity group was

displayed on the badges whenever a new encounter

was detected (Fig. 7). This was something of a digital

Fig. 6 A tree clustering badge wearers at a consortium meeting into five primary affinity groups based upon their encounter and bookmarking

activity during the open house
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‘‘T-shirt’’—nearby participants would note that their icon

was similar or different, often instigating conversation

about their experiences during the day.

3.6 Voting

The buttons on the badge can be used to take a poll of the

badge wearers during presentations. Conventionally, the

right (red) button indicates a disagreement, and the left

(green) button indicates agreement. When voting mode is

enabled, the button push flags are sent via the RF port—

inhibiting direct transmissions for frequent pushes and

sending only a summary push count after the pushing stops

prevents the CSMA protocol from jamming when

requesting votes from large audiences. The voting function

also has a ‘‘public’’ mode, where the degree of agreement

(dictated by repeated badge pushes) is indicated by the

number of LED’s illuminated on the badge.

3.7 Timekeeping

One of the most effective badge applications was as a

distributed display used for keeping time in presentations.

The Media Lab consortium meetings generally consist of

many very short research summary talks (4–8 min in

length) juxtaposed tightly back-to-back. Even though a

large clock was visible to the speaker and session MC’s

tried to intervene as speakers ran late, prior meetings had

considerable problems holding time, as many enthusiastic

researchers drifted over their allotment. Seeing your entire

audience flash warnings to you (Fig. 8) in a darkened

auditorium, however, is an experience that’s very difficult

to ignore (while the audience, facing forward, could not see

the badges, all were visible to the speaker). The time-

keeping displays were triggered either autonomously or

manually via radio broadcasts from the event administra-

tor’s PC located in the auditorium. For the two recent

meetings where the badges were used to flash timekeeping

cues at the speakers, the sessions ran much more punctu-

ally. As the histograms of normalized talk duration in

Fig. 9 attest, the badges worked well in eliminating the

long tail of extreme stragglers.

3.8 Badge network control and monitoring

An application was written to manage the above applica-

tions and interface with the badge network. The standard

control window for this application is presented in Fig. 10.

Badge commands generated by this application were sent

via the radio of a slave badge connected to the host PC’s

serial port, and could be also echoed by the other badge

base stations distributed across the building’s computer

network.

4 GuideStar interactive kiosks

The GuideStar system complements the intrinsic capabili-

ties of the badge. While the badge is quite capable of

displaying short messages and handling simple operations

like bookmarking, it lacks the user interface (UI) affor-

dances needed to manage more complex interactions. With

its full-size computer display and UI, GuideStar also allows

us to present a greater amount of on-demand, conveniently

Fig. 7 Screenshots of animated

affinity icons

Fig. 8 Timekeeping cues

flashed by the badges—

progressive warnings (top) and

scrolled text when overrunning

(bottom)
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located information customized to individual users, thus

providing benefit to the user beyond the convenience of

real-time bookmarking and voting. The system was

implemented as a series of kiosks (networked PC’s con-

nected to a badge IR transceiver mounted next to the

monitor) strategically placed at highly trafficked ‘‘cross-

road’’ locations created by the structure of the venue. Each

is capable of automatically identifying and greeting the

user by name. This simple and widely used metaphor for

ownership allows the user to immediately recognize their

interaction with the system. The GuideStar kiosks provide

two explicit functions to the user, as well as an implicit

ability to display the distribution of users within the venue

(Fig. 11). Firstly, they allow the user to locate another user

graphically, simply by typing in the first few letters of their

name. While the information received from the badges

about encountered squirts is generally too sparse for

accurate tracking, it does provide the location where the

quarry was most recently noticed (Fig. 12), which turned

out to be useful information for individuals wanting to find

others. Another function of the GuideStar system is to

allow a user to enter text messages that can be sent to a

particular badge, as mentioned in the previous section.

Lastly, the system can provide users personalized recom-

mendations for particular demos to visit during the open

house, according to their evolving interests.

In order to produce the personalized recommendations,

we use a combination of implicit and explicit user input.

When a user first requests a recommendation, he or she is

presented with a short game to explicitly select a few

keywords or phrases to represent their interests. In the

game, the user sees several keywords fly outward from the

Fig. 9 Histograms for number

of talks vs. their % time overrun

for sessions without (left) and

with (right) timekeeping badges

Fig. 10 Control panel window

from a PC-based application

that interfaces with the badge

network and manages all badge

system functions

144 Pers Ubiquit Comput (2010) 14:137–152

123



center of the GuideStar display (Fig. 13). The goal of the

user is to hit the word that most attracts their attention by

moving the mouse cursor toward it. Feedback is provided

by dynamically zooming into the word that the user moves

towards. Since the words fly off the screen within a few

seconds, there is implicit time pressure to select a word

quickly, which is intended to bias users toward known

words. The game is designed with the express goal of being

immediately rewarding and enjoyable, while providing

seed information for the recommendation system. Due to

the design of the game, it can only provide levels of cross-

validated information similar to a formal Likert-type

questionnaire when played for a several minutes. Since the

users only played for very brief intervals (typically 30 s),

we chose to use the game in a coarser context, presenting

only high-level words within the search tree that the user

could select in exclusion to others, and not displaying

lower-level, more niche-centric words. This design paral-

leled the demands of the events in which the badge system

was used, where decisions had to be made about how to

invest limited time towards a large number of options (e.g.,

which out of many demos or groups to visit during the 4 h

of open house). Preliminary testing also suggests that the

time for the user to react to a word may be an indicator for

how strongly the user is attached to a word. However, the

presence of multiple stimuli on one screen precludes the

use of this metric without a baseline measure. Nonetheless,

using these initial seed keywords as binary selections, we

are able to bootstrap the recommendation system imme-

diately, thus providing the user instant output that improves

over time as the system receives implicit input from the

user’s behavior while exploring the venue.

Implicit user behavior data is collected whenever the

badge is used to bookmark a squirt associated with a

demonstration. Each demo is represented by a weighted set

of keywords. When the user bookmarks a demo, its weights

are impressed upon the weight from the initial seeding

generated by the game. While the initial seed keywords are

given a higher weight in the beginning, they can be

Fig. 11 GuideStar personalized startup screen, showing the most

recent visitor distribution at demos across the building

Fig. 12 The GuideStar People-Finder screen, showing the user’s

location (left) and the most recently noted location of the selected

quarry (right)

Fig. 13 The GuideStar Profiler game screen. Words fly from right to

left, and text closest to the mouse position is made larger. Here, the

user has selected ‘‘low power design’’
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overridden over time by demo bookmarks representing

different keywords. Since the system is meant for use

within a short period, old keywords are not aged. However,

this would become necessary should the system be used

over longer periods, in order to prevent stale selections

from improperly biasing recommendation calculation.

As mentioned earlier, each demo known to the

GuideStar system is represented by a set of weighted

keywords, with each weight in (0, 1). Each demo can

therefore be represented as an n-component feature vec-

tor, where n is the number of keywords, and the set of all

demos can be represented as an m 9 n feature matrix,

where m is the number of squirt-tagged demos. The user

preferences are likewise represented as an n-component

personalization vector, indicating the weight given to each

keyword. The seed keywords chosen via the game are

given a weight of 5—determined according to expected

number of demo bookmarks between interactions with

GuideStar—and each demo bookmark causes the feature

vector for that demo to be added to the personalization

vector. The product of the personalization vector with the

feature matrix produces an m-component array of rele-

vance ranking. Any already-seen entries (either previously

suggested or bookmarked) are initially excluded. An

adaptive threshold based on the largest cross-user rele-

vance rating seen so far is applied to produce suggestions.

If no unseen entries exceed the threshold, the search is

expanded by increasing the relevance of other entries in

the same cluster as the seen entries as a function of the

relevance of the already-seen entry. This is a self-cumu-

lative effect, which over time expands the search to the

entire cluster. Since data from the badges are received

over their RF link in batches, recommendations for the

user are computed asynchronously ahead of time in order

to reduce delay for individual interactions.

5 Identifying social dynamics and behavior

One of the main limitations of today’s interactive badge

systems is that their notion of human interest is set either

by answering a few questions before or during the event

(e.g., the GuideStar game introduced above), or is simply

hardwired into the system design. This limits the range and

flexibility of these systems, sometimes making them feel

more like party games than serious social networking tools.

Accordingly, we are developing automatic interest detec-

tors that remove the restrictions imposed by use of preset

questions and the requirement that users explicitly

‘‘bookmark’’ interesting people/events. Instead we aspire to

measure interest directly from normal human behavior. We

are also developing an affiliation classifier that aims to

infer relationships between subjects without any such

explicit labels. A person should be able to pick up a badge,

wear it, and have the system learn the group of people with

whom he or she associates. If we can achieve both of these

goals, then we can begin to group people by the pattern of

interests they display, and make suggestions based on these

patterns, without requiring users to answer preset questions

or input new data during the networking event. By learning

the affiliations between people, we identify a social net-

work that can further guide the recommendations.

Nalani Ambady and Robert Rosenthal [16] have shown

that observers can accurately classify human attitudes

(such as interest) from non-verbal behavior, using obser-

vations as short as 6 s. The accuracy of such ‘‘thin slice’’

classifications are typically around 70%, corresponding to a

correlation between observer prediction and measured

response of about r = 0.40. Initial experiments using a

range of motion and sound features indicate that it is

possible for computers to duplicate this human perceptual

ability [17, 18]. We therefore set out to measure human

interest levels and affiliations using the sensors and com-

putation capacity of our badge platforms.

We created the interest detector described in this section

by using the bookmarks recorded by the UbER-badges as

labels for the sensor data. Individual models were created

for both badge-to-badge and badge-to-demonstration

encounters. Our affiliation detector draws upon company

names as ground truth for its learning. The classifier infers

dyadic (e.g., user–user) affiliation based on observations of

face-to-face encounter duration as well as correlations in

accelerometer-derived badge motions over time. The

interest classifiers can run in real-time on the badge

microprocessor alone, allowing classification of user

interest during the course of the event. The affiliation

classifier runs in real-time mostly on the badge, but

requires using the badges’ RF link to a PC server (or a

peer–peer badge network) in order to compare results

between badges.

The fall consortium meeting resulted in a data set that

included 113 badges and 76 Squirts. Unfortunately, due to

a combination of hardware and software problems, a

sizeable (but random) part of the full sensor data was lost.

We corrected these problems for the spring meeting and

successfully collected data from 84 badges and 73 Squirts

that were deployed. After validating the data, we isolated

sections of the sensor data that pertained to the badge-to-

badge encounters (‘‘badge encounters’’) and the badge-to-

demo encounters (‘‘Squirt encounters’’). Within each of

these categories, we further divided segments into two

groups: (1) those that received bookmarks and (2) those

that did not. Our data sample included 311 bookmarked

badge encounters and 320 bookmarked squirt encounters

vs. 3,703 non-bookmarked badge encounters and 400 non-

bookmarked squirt encounters.
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Two types of preprocessing were performed on the

measurements that are used in the feature vectors. First, the

sensor data recorded to flash memory was normalized on a

per badge basis. This allowed variation in badge hardware

to be controlled. Second, the encounter data from the IR

was propagated between all badges, to minimize the pos-

sibility of an incorrectly labeled encounter in the training

dataset. We also verified that the act of making a bookmark

was not skewing the accelerometer features by testing our

model on the badge-to-badge encounters that received

bookmarks. These badges did not need to be handled in

order to receive a bookmark and showed a similar classi-

fication distribution to the bookmarked encounters.

Using this sensor and interaction data, we created a 15-

dimensional feature vector for every encounter. The aver-

age amplitude (AUDAMP) and average difference (AUD-

DIF) samples were subtracted to create a third audio

measurement (AUDSUB). For each encounter, the mean

lAUDAMP; lAUDDIF; lAUDSUBð Þ and standard deviations

lAUDAMP; lAUDDIF; lAUDSUBð Þ of these measurements

were used as audio features. In a similar manner to the

audio measurements, the accelerometer measurements

(ACCx, ACCy) were subtracted to create a third acceler-

ometer measurement (ACCSUB). For each encounter, the

means lACCx; lACCy; lACCSUB

� �
and standard devia-

tions rACCx; rACCy; rACCSUB

� �
of these measurements

were used as audio features.

The remaining three features were derived from the IR

data and represented the number of other encounters that

occurred during the primary encounter (IRCOUNT), the sum

of the lengths of all the encounters that occurred during the

encounter (IRSUM), and the length of the specific encounter

being considered (IRLEN).

In addition to the per-encounter features, we created a

symmetric adjacency matrix that contains the sums of the

durations that each dyad of badges spends within IR range

of each other. These sums were accumulated for the course

of the entire spring event.

More detail on the algorithms and procedures developed

for deriving socially relevant variables from the UbER-

Badge data is given in [19].

5.1 Interest detection

We analyzed the encounter data set with the goal of cre-

ating two classifiers: one that would predict bookmarking

of badge-to-badge (badge) encounters and another that

would predict bookmarking of badge-to-Squirt (Squirt)

encounters. We found strong correlations between the

features and an encounter being bookmarked for both the

badge and Squirt encounters. Badge encounters showed a

significant correlation between accelerometer features and

bookmarks, primarily in the standard deviation features.

Squirt encounters showed a very different set of correla-

tions. Audio features exhibited a negative correlation with

receiving a bookmark but accelerometers showed no sig-

nificant correlation at all. This may indicate that, for demo

(squirt) bookmarks, the interested badge wearer is quietly

reading or observing the demo before taking a bookmark.

From the original set of 15 encounter features, we

picked the most-correlated features, and constructed a

predictor function using simple linear regression. Cross-

validation was performed using a ‘‘leave-twenty-percent-

out’’ method, and decision boundaries were selected such

that the difference between classification accuracy for the

bookmarked and non-bookmarked encounters was

minimized.

Using the six highest ranked badge encounter fea-

tures rACCy; rACCy; lAUDAMP; rAUDAMP; lAUDDIF;
�

rAUDSUBÞ, our linear combination model classifies 86.2%

of badge-to-badge encounters correctly with a cross-vali-

dation accuracy of 85.5%. Accuracy was very similar at

both the spring and fall conferences. The performance of the

top five Squirt encounter features rACCSUB; rAUDAMP;ð
rAUDDIF; lAUDSUB; rAUDSUBÞ was almost as good with

a classification accuracy of 78.4% and cross-validation

accuracy of 78.3%. Accuracy was very similar at both the

spring and fall Media Lab meetings. Figure 14 shows the

classification distributions for both classifiers combining

both datasets.

5.2 Affiliation detection

We analyzed the encounter data set with the goal of

determining what behaviors were useful predictors of

affiliation. We found two factors (which we term cumu-

lative time and influence), which can be used indepen-

dently or in combination.

As presented in [14], cumulative time spent face-to-face

with someone as measured by IR encounters has a medium

correlation with whether two people are affiliated or not

(r = 0.4681, p � 0.001). Using this feature alone, a sim-

ple threshold model will achieve 88.7% accuracy in

determining whether two badge-wearing attendees at our

consortium meeting are from the same corporation or not.

We could also determine affiliations from correlations

in wearer activity. To accomplish this we employed the

influence model, a partially coupled Hidden Markov

Model that can be used to learn ‘‘influence values’’ across

multiple chains [20]. We modeled each badge as a

Markov chain with two hidden states (moving, not mov-

ing) whose observations were accelerometer motion fea-

tures. Using expectation maximization, we learned the

parameters of this model, including the influence values.

We found the influence values across two badges corre-

late with their wearers being from the same corporation
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(r = 0.3981, p � 0.001), producing 69.28% prediction

accuracy [14].

Combining the cumulative time and influence predictors

using a simple polynomial regression model produces a

predictor with 93.0% accuracy and cross-validation accu-

racy of 92.7%.

Thinking further along these lines, a feature that has

potential bearing on affiliation detection is correlated

motion, as inferred from similarities in accelerometer data

across a pair of badges. This feature is attractive, as it does

not require an IR line-of-sight, and could perhaps be

measured by accelerometers embedded in canonical plat-

forms such as mobile phones kept in the user’s pocket

rather than an IR transceiver that needs to be mounted on a

visible platform like a badge. The most basic dyadic

motion feature that we have been using is the correlation

across an ‘‘energy feature’’ calculated independently for

two individuals’ accelerometers. This energy feature is the

standard deviation of the magnitude of the 2D accelerom-

eter over a 2-s period.

We have recently observed this relationship in the

Scottish high school data set (dominated by groups of

young people walking through the career fair), where the

natural logarithm of time spent face- to-face (determined

by the IR system) between two people had a medium

correlation (r = 0.55, p \ 0.001) with the correlation in

their dyadic energy feature [14].

Figure 15 shows a 2D distribution of badge-wearers at

the consortium meeting open house separated by a metric

derived from their dyadic energy feature—points that are

close together in this diagram have high correlation in their

motion. It can be seen that when just using this energy

feature alone, badge wearers from the same companies tend

to cluster together, indicating that they tend to move in

synchrony and attesting to the effectiveness of motion

features in determining affiliation.

5.3 Group restlessness during presentations

It is widely assumed that seated audience members squirm

and fidget increasingly as a lengthy presentation pro-

gresses, and perhaps their degree of restlessness can change

whether they are interested vs. bored. As our badges fea-

ture onboard accelerometers, and our participants endured

several hours of rapid-fire lectures in our auditorium, we

have examined the data from our spring meeting to look for

correlations of this sort.

Figure 16 shows accelerometer data from all badges

accumulated throughout the entire day of a Media Lab

event. The banded structure follows the timing of the

event—buffet breakfast, first talk session, coffee break,

second talk session, lunch, third talk session, then open

house. The plots show that the environment during talks

tends to involve less motion dynamics, since people are

seated and listening, as opposed to moving around and

talking to one another (the collective audio data show a

similar, although somewhat less distinct, segmentation, as

the sound environment is different during each phase of the

Uninterested

Interested

Uninterested

Interested

Badge-To-Badge Badge-To-Demo

Fig. 14 Performance of interest detectors for badge-to-badge (left) and badge-to-demo (right) encounters
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meeting). We have examined the accelerometer data during

the three talk sessions to look for meaningful trends. As

participants during this meeting were asked to vote (push a

button on their badge) if they wanted more detail sent to

them about the presentation that they were hearing, we had

a set of labels that indicated interest in particular talks.

Although more analysis could be performed, we saw no

significant correlation between our fidget feature (the var-

iance in accelerometer data integrated across each talk and

normalized by the talk duration) with votes of interest. At

this stage in our analysis, we also do not see any significant

indication of an increase in fidgeting with the net amount of

time people were continuously sitting in the auditorium

(sessions would last between 1 and 2 h). As plotted in

Fig. 17, we did, however, see a medium-low, but still

significant correlation (r = 0.42, p \ 0.001) between the

duration of each individual presentation and the fidget

feature, suggesting that people tended to become more

Fig. 15 Distribution of badge

wearers for the consortium

meetings across an affiliation

metric derived solely from their

dyadic energy feature

Fig. 16 Accelerometer signals

for each badge plotted across an

entire day-long consortium

event
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restless as individual talks dragged on (the two morning

sessions consisted of circa fifteen 5-min talks each, and the

afternoon session consisted of three 20-min talks).

6 Conclusions and ongoing work

The UBeR-Badge proved itself to be a useful platform for

acquiring data for analyzing social dynamics, while pro-

viding a set of convenient user features that made wearing

the badge worthwhile for event participants. The badge

design was be robust, and held up well to the rigors of long

meetings. The vast majority of participants kept them on

throughout the events, regardless of their 170 g weight, and

follow-up questioning of the meeting participants indicated

that most were happy to wear them just for the added

benefit of convenient bookmarking of demos and col-

leagues, indicating that people will willingly take part in

such experiments if they derive direct benefit from the

process. Although the LED array limited displays to simple

scrolling text and coarse animation, its high brightness

proved to be very effective, as it was easy to notice and

read the badges from large distances (e.g., across a room).

A display made of bi-colored LEDs (rather than the fixed

yellow or green LEDs used in the current badges) would

have still been economically feasible and quite useful, e.g.,

for readily displaying agreement/disagreement as in the

Thinking Tags [2] and other modes of user status.

Even though everyday nametag badges are generally

designed to be primarily seen by people other than the

wearer, some individuals expressed discomfort at having

messages for other people display on their badge. The

distributed display provided by the badges worn in the

auditorium was very effective at keeping speakers to their

allotted times despite very jammed meeting agendas.

Although our analysis was preliminary, we see a significant

correlation with the restlessness of a seated audience with

the duration of the presentation that they are observing.

The IR localization update rate was somewhat slow

because of the narrow field of view on the squirt IR

transceivers. Combining IR and RF localization schemes

could provide better performance—e.g., when badges see

several RF base stations, a common RSSI fingerprinting or

interpolation technique could serve to coarsely locate them

[e.g., 21], with refinement provided by acquired IR squirts.

Although our GuideStar badge kiosk system worked well,

its usage during the consortium meeting was limited, as there

were not enough kiosks scattered around the building,

making GuideStar encounters less frequent than anticipated.

Our sensor analysis shows that we can automatically

generate bookmarks that approximate the decisions made

by UbER-Badge wearers with over 80% accuracy, without

taking into account personal characteristics, history, or

other prior knowledge. Similarly, we can infer affiliations

of the wearers with greater than 90% accuracy, again

without prior knowledge. A next step is to work toward

having the badges begin proactively suggesting things of

interest to the wearer, as the model starts to correlate their

behavior patterns and associates them with other individ-

uals and groups.

Ultimately, such a badge platform could be a wireless

peripheral to a mobile phone—the badge would provide a

wearable display, which may become a fashionable piece

of apparel outside of industrial conventions, while the

phone provides computational power and networks to the

local infrastructure. Indeed, cell phone manufacturers have

explored prototypes of modular phones, where a thin

wireless display can detach, enabling it to be worn or

carried away from the body of the phone [22]. Although the

badge is well suited to line-of-sight sensors such as IR

transceivers, we have indications that some social associ-

ation can be extracted from correlated motion cues derived

from an accelerometer that could be perhaps carried in

one’s pocket or purse.

We have subsequently designed a smaller next-genera-

tion badge platform called the Communicator Badge [23]

(Fig. 18) that sacrifices the display and operates quies-

cently at much lower power by using analog signal pro-

cessing and passive wakeup techniques [24]. In addition to

supporting our own low-overhead RF networking scheme,

these badges also are Bluetooth enabled, enabling them to

interact with common platforms such as mobile phones.

These badges were designed to also support functions

useful for the wearers (e.g., push-to-talk person-to-person

direct communication, as they host an onboard speaker) to

Fig. 17 Fidgeting distributions (average is denoted by red circles) vs.

the length of individual presentations for all sessions in the

auditorium
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encourage them to be worn and kept on (a recent repack-

aging of this badge has eliminated this feature to make the

package roughly 50% smaller). They have been used in

recent social networking studies by the MIT Media Lab’s

Human Dynamics Group that explore interpersonal

dynamics occurring at various stages of projects evolving

at large companies [25]. To accomplish this, badges are

deployed to all the employees within participating groups

at the commercial organization for periods of 2–6 weeks.

As in the work presented in this paper, the primary data

recorded by these badges are conversational patterns, tone

of voice, body motion, and proximity. To this face-to-face

information, we can add email exchanges, and patterns of

other digital communications. This produces a fairly

complete profile of communications within the organiza-

tion, but does not include any content, thus avoiding some

of the more difficult privacy problems that can arise in such

pervasive deployments. These communication patterns are

then compared to productivity metrics conventionally used

by these businesses, including measures of creative pro-

ductivity. The results have been dramatic, showing that

variations in patterns of communication can account for up

to 40% of variation in productivity [26]—this work has

won the ‘Breakthrough Idea of 2009’ award by Harvard

Business Review [27]. As a consequence, several compa-

nies are now beginning to use these techniques to improve

results in call centers and in programming teams.

We are now finalizing an even smaller badge with more

sensing capability, an OLED display, and onboard Zigbee

radio—this lBadge (Fig. 18) [28] will be used in a

framework that automatically labels and assembles media

clips according to queries based on social context inferred

from the badge signals [29].
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