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Abstract—We present a framework for the automated gen-
eration of power-efficient state detection in wearable sensor 
nodes. The core of the framework is a decision tree classifier, 
which dynamically adjusts the activation and sampling rate of 
the sensors (termed groggy wakeup), such that only the data 
necessary to determine the system state is collected at any given 
time. This classifier can be tuned to trade-off accuracy and 
power in a structured fashion. Use of a sensor set which meas-
ures the phenomena of interest in multiple fashions and with 
various accuracies further improves the savings by increasing 
the possible choices for the above decision process. 

An application based on a wearable gait monitor provides 
quantitative results. Comparing the decision tree classifier to a 
Support Vector Machine, it is shown that groggy wakeup allows 
the system to achieve the same detection accuracy for less aver-
age power. A simulation of real-time operation demonstrates 
that our multi-tiered system detects states as accurately as a 
single-trigger (binary) wakeup system, drawing substantially less 
power with only a negligible increase in latency. 

 
Keywords— power-efficient sensing, tiered wakeup, cost-
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I. INTRODUCTION  

Wearable sensor nodes are currently being used in a wide 
variety of applications. These include, but are certainly not 
limited to, implantable cardiac defibrillators[1], everyday 
activity loggers[2] and gait analysis systems[3]. Such systems 
are part of a new class of sensor-driven applications, leverag-
ing the decrease in both price and size of the components to 
allow rich, multimodal data streams to be captured by very 
compact systems. However, wearable sensing applications are 
constrained to short lifespans by high power usage and lim-
ited battery size. For example, long-term medical monitoring 
is currently hindered by its power consumption. Both fixed 
environmental sensors – which cannot provide a full picture 
of an active patient's movements – and body-worn sensors – 
which require large battery packs and/or frequent replacement 
– are inadequate. 

By concentrating our design efforts on the sensors them-
selves, rather than on the networking or processing, it is pos-
sible to construct sensor systems that achieve their goal(s) 
while drawing significantly less power. By reducing the 
power consumption, it is possible to reduce the size of the 

device and/or increase its lifespan. Both of these parameters 
directly improve marketability and user acceptance, allowing 
many more applications to make the transition from labora-
tory to marketplace and thereby benefit a wider population. 

II. FRAMEWORK OVERVIEW 

The main goal of this work is the reduction of energy us-
age in wearable sensor systems through the creation and 
demonstration of new tools and algorithms for the design and 
construction of power-efficient sensor systems. We start from 
a fundamental: the raison d'etre of these devices is to collect 
and process data and therefore the design of the sensors 
should be central. Therefore, we concentrated on reducing the 
energy usage of the sensors within the nodes. This metric was 
chosen since both general and tractable, though it is important 
to note that any power savings in the form of reduced sensing 
also correspond to further power savings through a reduction 
in: 
• data to process. 
• data to transmit or store. 
• data to analyze (particularly for a human expert). 

Any gains through this work can be considered independ-
ently from the large body of work exploring power savings 
through improvements to ad-hoc networking protocols and 
processor efficiency. 

The framework presented is centered on the concept of 
“groggy”, or tiered, wake up. This is in contrast with the more 
common binary wake up systems, which have only two 
modes: fully active, collecting all possible data and drawing 
maximal power, or fully asleep, collecting no data and draw-
ing virtually no power. Instead we envision a system with a 
number of different levels of activity and associated power 
usages. Each of these comprises the currently active sensors 
for state determination and their sampling rate, and algo-
rithms to describe the levels transitions. Our goal is to deter-
mine the system state at any given point in time for the small-
est outlay of energy. The response thereto is not constrained 

The form of the solution is such that the sensor sampling 
rates, as well as the transitions between them, are generated in 
a semi-autonomous fashion and can easily be embedded in 
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hardware. Therefore, the work should be applicable to a wide 
variety of applications. 

Given a desired application, the design process will pro-
ceed as follows. Hardware for the individual application will 
be configured. In the initial deployment for testing and sam-
ple data collection, it is assumed that the system will include 
any sensors that could possibly be of value for state determi-
nation. A training data stream is collected and is annotated by 
the application designer. It is then used to determine the sen-
sor data necessary to differentiate between the states. This 
information allows the final form of the hardware to be built 
(possibly with a pared down sensor set) and the state determi-
nation algorithm to be implemented on it. Each of these tasks 
is discussed in the proceeding sections. 

III. RELATED WORKS  

There are a number of tiered wakeup systems, mostly built 
in an ad-hoc fashion, which have recently appeared in the 
literature. A group at UC Berkeley[4] examined the problem 
of detecting and identifying civilians, soldiers and vehicles 
traveling through a dense grid of independent sensor nodes. 
The nodes were awakened using a passive infrared detector, 
which then activated a microphone and magnetic sensor to 
identify the source of the trigger. This project did not meet its 
lifespan goals for a number of reasons. Key among them was 
the much higher incidence of false alarms than predicted, 
mostly caused by moving flora. This illustrates the danger of 
designing systems without the use of real-world sample data 
streams, instead relying on hand-scripted thresholds[5]. Also, 
the system draws more power than necessary since it turns on 
all sensors after a trigger, while the acoustic sensor alone can 
be used to distinguish between humans and vehicles and 
draws far less power than the magnetic sensor. A more ana-
lytic approach would likely have both identified these flaws 
sooner and made them easier to correct.  

Van Laerhoven[6] designed an activity monitor based on a 
cluster of tilt switches and a single two-axis accelerometer. 
The tilt switches are used both for pose detection and to de-
termine when the activity level is high energy to merit turning 
on the accelerometers. While this design is quite clever, the 
techniques presented have all been determined and hard-
coded for a single application and sensor set. There is no 
apparent way to extend or generalize these techniques. 

Non-state-based (unsupervised) systems have also been re-
ported. Jain and Chang's[7] work on adaptive sampling for 
sensor networks is one example. They use the innovation of a 
Kalman filter[8] as a measure of the entropy rate of the data 
stream and adjust the sampling rate accordingly. Note that 
this is a purely entropic approach - more data is collected 
because the phenomena are varying at a faster rate. While this 
technique generated good results in a sample application, it 

assumes that data should be collected in all states and cannot 
differentiate between them. Further, the Kalman filter itself is 
a fairly structured (and computationally expensive) model 
that would not be appropriate for all systems. 

IV. HARDWARE 

The prototype hardware for this framework is implemented 
using a modular sensor platform we have designed. This 
platform is based around a series of circuit boards (or panes), 
each of which instantiates a specific sensing modality –  e.g. 
inertial sensing, tactile sensing or ambient sensing – with the 
goal of reducing needless reimplementation of common com-
ponents. Each board encapsulates the best practices in a given 
field, thereby saving substantial design time. Further, these 
boards can be arbitrarily combined and recombined, allowing 
for rapid prototyping and testing of proposed sensor combina-
tions. For a given application, the designer can use this plat-
form to quickly put together a sensor node with which to 
collect training data. We discuss two important design charac-
teristics below. A more detailed discussion of this platform 
can be found in [9]. 

Since much of the power savings of the framework is 
predicated on power-cycling the various components, reduc-
ing the wake up time is key to minimizing the power wasted 
during that interval. For sensors, this parameter can vary 
widely both between different sensing mechanisms for a 
given phenomenon (e.g. effectively nil for a phototransistor to 
40ms for a IR rangefinder) and individual parts (e.g. 8ms for 
the ADXL202 MEMS accelerometer to 100ms for the pin 
compatible MXR2312 thermal accelerometer). The wake up 
time sets the upper limit of how quickly a sensor can be cy-
cled while still offering power savings over continuous acti-
vation. It should be noted that the availability of this informa-
tion is spotty at best – given on some datasheets while 
completely ignored on others. Further, no information is 
given about the power draw during wakeup. In many cases it 
is likely the same as normal, though for some sensors (e.g. 
that need to charge internal capacitor or equilibrate filters) it 
may well be noticeably more. Further, since most microcon-
troller-based analog to digital converters can sample far faster 
than sensors can be activated, the energy used to wake up the 
sensor can be considered to be the energy used per wakeup 
cycle.  

A second key design technique will be the use of multiple 
sensors to measure a single parameter of interest. For exam-
ple, the inertial board uses both passive tilt switches and ac-
celerometers to measure motion. The vast majority of sensor 
systems limit themselves (usually in the interests of simplicity 
or compactness) to a single sensor for each modality of inter-
est. No matter how efficient such an implementation is for 
extracting information, it is guaranteed to be power inefficient 



in states were less (or more) data is necessary to determine 
the transitions. A system which can tailor its sensing in real-
time to the current state of the device can draw far less power 
on average. While it seems counterintuitive that we can make 
a system more power-efficient by adding complexity (and/or 
redundancy), the key is that the system has been given a new, 
lower energy source of information. 

V. PATTERN RECOGNITION 

A. Data Collection 
We have chosen a supervised training approach based on 

the assumption of fairly constrained applications and clarity 
of designer intent. The main benefit of this approach is the 
ability to ascribe specific meaning to the chosen states (e.g. 
walking), to combine states that might otherwise be separated 
(e.g. fast and slow gaits) and to ignore altogether portions of 
the data stream that could potentially be considered interest-
ing (e.g. skipping).  

Training data is collected using the following two-part 
procedure to acquire the most relevant data. The first stream 
will be reasonably short and contains the active (high en-
ergy/variance) states – both those considered interesting (i.e. 
to be detected) and not – that are known to the designer. The 
selection of states is left to the discretion of the application 
designer. The second contains a long-term background re-
cording, to provide a baseline for the uninteresting cases and 
to catch states that were not considered by the designer above. 
Both streams are captured at the maximum useful data rate. 
For wearable/human applications, we use 200Hz. 

While a long-term data stream could be used as the sole 
source of the training data, this tends to be inefficient for a 
number of reasons. Firstly, the length of the recording neces-
sary to acquire good examples of all complex states can be 
quite long and their duration may be quite short. Secondly, 
the vast majority of the uninteresting data collected will be of 
little to no value in the classifier training.  

B. Feature Extraction 
A set of simple first order functions is used to calculate the 

features – the windowed mean, variance, minimum and maxi-
mum. These features have been used successfully on time 
series of human motion, both with inertial[10] and video[11] 
data. These are good general statistics for two reasons. First, 
they are algorithmically efficient to implement in a point-wise 
fashion such that they can be calculated quickly and for little 
power in an embedded microcontroller. Second, since the data 
stream will be wide sense stationary over a window size equal 
to the period of the data (within any given state), the mean 
and variance will be constant (with the exception of additive 

noise). This converts a sequence of time varying values to one 
that varies with state alone. 

There are two free parameters in the calculation of these 
features – window size and sampling frequency. Window size 
is fixed as the period of the motion of interest, for reasons 
given above. On the other hand, multiple sampling frequen-
cies are used to allow the classifier to choose the lowest rate 
(and power usage) that achieves its accuracy goals. However, 
to avoid having to power cycle a microprocessor on a com-
plex and irregular schedule (which would vary with state), we 
limit the frequencies to the Nyquist frequency and power of 
two fractions thereof. 

C. Classifier Design 
The specific goal of this work is to create a hierarchy of 

activation states to allow the system to make a state determi-
nation using as little information (i.e. energy) as possible. 
Therefore, the classifier used should be able to make deci-
sions in the same fashion - using more or less data as needed. 
Most classifiers do not have this ability, and instead require 
that all data be present to make any state determination. 

In contrast, decision trees structure classification in the 
form of a series of successive queries, with each response 
leading to a following query until a state is determined[12]. In 
this way, the tree uses different sets of features to classify 
different states (or subsets thereof). In the case of an unbal-
anced tree, some classifications are made with fewer deci-
sions (and therefore less energy) than others. Overall, the 
desire for hierarchical activation requires a hierarchical classi-
fier. Further, the query-based structure allows for very fast 
implementation in an embedded microcontroller, since only 
simple comparisons are required to evaluate the classifier 
(beyond the calculation of the features themselves). There-
fore, decision trees with are used in this framework. 

In general, our system follows the CART algorithms for 
constructing decision trees as detailed in [13]. The key differ-
ence is that we take the cost of the features – which we define 
as the energy necessary to collect and calculate them – into 
account. In the case of sensor data, this almost always reduces 
to the cost to power up the sensor itself. The hierarchical 
structure of the decision – where certain sensors may already 
have been used to answer a query – adds some complexity. 
Any sensor used at the same (or higher) sampling rate higher 
in the tree has its cost reduced to zero, since the data has 
already been collected. If the sensor was used at a lower sam-
pling rate, the cost of use is discount by that already paid, 
since some of the necessary data is already being collected.  

Energy usage is taken into account by reducing the split-
ting criterion used to determine the query to use at any given 
node i by a factor of (1+ TCi) , where TCW

i is the test cost  for 
the sensor at that node and W is a parameter used to adjust the 
trade-off between power and accuracy. This factor does not 



distinguish between active sensors and requires unused sensor 
to achieve a certain quality of split (depending on W) before 
they will be activated. To avoid non-linearities, test costs 
should be scaled such that the minimum value is greater than 
ten. The ratio of the value of the splitting criterion for a per-
fect split and a meaningless one sets the maximum useful 
value for W – in the case of the Gini index used in CART, 
this value is 0.29.

VI. EMBEDDED SOFTWARE 

Having trained an appropriate classifier with the desired 
power and accuracy characteristics, it is fairly straight-
forward to implement it on a wearable sensor node. The deci-
sion tree is encoded in array format, with each entry contain-
ing a sensor feature to test on, the threshold for that test, and 
the index of the next node given a positive or negative result. 
Entries corresponding to leaf nodes will simply contain the 
state determination. In either case, a listing of the sensors 
necessary to get to that point is also given. The code itself 
keeps track of the currently active sensors as well as an ac-
counting of the recent requests for inactive sensors. 

The code execution cycles through a fairly simple loop. 
The processor awakens at a predetermined time and awakens 
and collects the data from the active sensors and updates their 
features. Constant time algorithms for the features are well 
known and will not be presented here. The classifier itself is 
then run. If a state is determined, the processor executes the 
desired response (set by the application designer). If the in-
formation necessary to determine a state is not available, the 
system is considered to be in an indeterminate state. Next, the 
sensor needs of the tree are examined, with an update of the 
accounting of both the sensors that are needed but are inac-
tive, and the sensors that are active but are not needed. The 
system then goes to sleep until the next cycle. Cycle length is 
determined by the highest update rate among the currently 
active sensors. 

Effectively dealing with sensor activation is key to the ef-
ficient operation of this system. Instantly turning on sensors 
when requested or turning them off when not used to make a 
decision will leave the system highly susceptible to noise. 
Waiting too long to activate the sensors will increase latency, 
while waiting too long to turn off a sensor will waste power. 
In the current simulations, a sensor must be requested or un-
used for 5 cycles before its activation state will be altered. 
This parameter has not yet been optimized. It may be that a 
higher value is necessary, since whenever a sensor is reacti-
vated there is a delay equal to the window length (or one 
cycle of the state of interest) before enough data will be avail-
able to calculate the features and run the classifier again. 
Therefore, it may be necessary to sacrifice some power to 
keep the latency to a reasonable level. 

VII. LIMITATIONS 

We note two important limitations imposed on this frame-
work. First, we have limited the systems examined to the use 
of passive sensors – those which measure the environment 
without affecting it. Active sensors (e.g. sonar, radar) - those 
which control the transmission as well as the reception of the 
measured signal - are excluded both because of their power 
usage (one to two orders of magnitude greater than passive 
sensors) and their complex power management (both the 
output power and the sampling rate can be adjusted individu-
ally). 

Structurally, any wake-up based system has the potential to 
miss anomalous events (i.e. those with no precursor) - either 
entirely or during the state determination procedure. While 
this is a problem in general, it should be minimized given our 
concentration on wearable sensing. Since most activities in 
this domain take place on the order of seconds (at minimum) 
and state determination requires at most a second, the chance 
of missing an event is minimal. 

VIII. ANALYSIS 

A. Data Set and Collection 
For testing, a data stream containing a wide variety of dif-

ferent ambulatory activities was collected, using a shoe 
mounted node containing three axes of gyroscopes, three axes 
of accelerometers and a four-way passive tilt switch. The set 
of activities chosen was: normal gait, walking uphill and 
downhill, ascending and descending stairs, and shuffling gait. 
This data set allows us to create classifiers that attempt to 
separate a single (complex) ambulatory activity from the rest. 
Such a system would be valuable for Pakinson’s Disease 
patients, where a doctor would be most interested in collect-
ing information about the frequency and parameters of the 
patient's shuffling episodes[14]. For patients with total knee 
replacement, activities such as ascending stairs (where the 
knee flexion is >90°) are the most important to measure[15]. 
Such cases allow for far more complex and richer classifiers 
than those used to simply separate ambulatory from non-
ambulatory (roughly: still) states. 

Data was collected using the process described above. The 
active data stream contained two separate segments of ap-
proximately 30 seconds in length of each of the non-walking 
motions. These motions were each bookended by a segment 
of normal gait. This data was collected in a single session 
lasting approximately 30 minutes and was recorded with a 
video camera. Annotations were later added to the data stream 
based on camera's time stamp. 

The long-term data stream was designed to collect data 
representing the everyday activities of an office-bound 
worker. Two hours of data were collected with the subject 



 
Fig. 1: Power/Accuracy trade-off curves for decision tree and SVM classifiers 

sitting at his desk performing a number of basic activities -- 
typing, reading, searching for papers, etc. Non-ambulatory 
motions such as adjusting the position of the feet, moving 
from one desk to another and waving the feet under the desk 
were collected. The subject recorded his activities in a simple 
diary, with annotations later added to the data stream using 
the diary as a rough guide and visual inspection of the data 
stream to more precisely mark the times. 

 

B. Classifier Performance 
The above data stream was used to test the ability of our 

framework to create classifiers that trade off power and accu-
racy. Classifiers were trained to detect each of the six walking 
motions amongst the others. Only the active data set was used 
to avoid placing a large positive skew on the accuracy (since 
non-walking motions are trivially excluded using the tilt sen-
sors). The sensors and their power usage at the various fre-
quencies used in the classifiers are shown in Table 1. Note 
that the gyroscopes cannot be power cycled above 33Hz and 
the accelerometers above 125Hz. It is assumed that ambula-
tory motion is 80% normal gait and 4% of each of the other 
gaits. While these are estimates, we note that decision trees 
are fairly robust to errors in prior probabilities. 

Table 1:  Power usage of sensors for various frequencies T

 25 Hz 50 Hz 100 Hz 200 Hz 
Gyroscope 22.5mW 30mW 30mW 30mW 
Accelerometer 0.396mW 0.792mW 1.58mW 1.98mW 
Tilt Switch 0.41μW 0.83μW 1.6μW 3.3μW 

 
Figure 1 shows the power-accuracy trade-off curves for de-

tecting uphill, shuffling and normal gait (other classifiers 
omitted due to space constraints). The final point in each 
graph is from the decision tree grown without power con-

straint. We note that while the accuracy always increases with 
power, there is a knee point at which the marginal gain be-
comes quite low. This data is given in table 2 below. 

Table 2: Asymptotic power behavior of trained tree classifiers T

 Inflection Point Maximum 
 Power Accuracy Power Accuracy 
Uphill 5.66mW 0.9824 33.82mW 0.9905 
Shuffling 125uW 0.9976 1.585mW 0.9985 
Normal 5.89mW 0.9272 10.02mW 0.9325 

 
Figure 1 also shows the results of a Gaussian kernel Sup-

port Vector Machine (SVM)[16] trained with various subsets 
of the sensors (always activated). Only the monotonically 
increasing hull of the points is shown (hence the two point 
graph for shuffling). While the eventual maximum accuracy 
(beyond the right-hand edge of the graph) is greater than that 
of the decision trees, we note that the trees outperform in the 
low power domain. This confirms the benefits of the tiered 
structure of the decision tree, even when compared with a 
(nominally) more powerful technique. 

C. Embedded Simulation 
Since the tree classifiers were trained without regard to 

time information, it is important to confirm that they perform 
well in real-time conditions. The embedded software de-
scribed above was simulated in MATLAB. Figure 2 shows 
the results for uphill gait classifier at the inflection point. 
Both the ground truth (user annotation) and smoothed detec-
tion of the classifier (state changes are only acknowledged if 
their duration is greater than 0.25 seconds) are shown. Table 3 
gives the duration of false positives (FP) and false negatives 
(FN) compared to the true positives (TP) and true negatives 
(TN) for the tasks above. Total length is 323 seconds. For 



 
Fig. 2: Model of Real-time Operation for Detection of Uphill Gait  

shuffling gait, most of the FPs come for small triggers likely 
caused by readjusting the feet. For normal gait, most come 
from overly conservative activity labeling (which is beneficial 
when training the classifier). 

Table 3: Incidence of false positives and negatives on trained trees T

 FN TP FP TN 
Uphill 5.81s 28.23s 3.11s 285.57s 
Shuffling 0.77s 34.93s 15.82s 271.20s 
Normal 7.66s 99.62s 50.97s 164.48s 
 

As a final test, we constructed binary classifiers using the 
root node of the chosen decision trees (i.e. if the first query is 
met, the system is fully activated). This allowed us to estimate 
the power advantage of a multistage wakeup. For uphill and 
normal gait, the savings were 56% and 46% (respectively). 
The best solution for shuffling was found to be a binary clas-
sifier. 

IX. CONCLUSIONS AND FUTURE WORK 

We have described a three-component framework for 
power-efficient detection in wearable sensors. The first is 
modular hardware platform for ease of application prototype. 
The second and key component is a semi-autonomous classi-
fier construction algorithm. Given an annotated data stream, 
the system uses a version of the CART algorithms, modified 
to take sensor power into account, to produce a family of 
decision trees with various power/accuracy parameters. The 
final component is an embedded implementation of this clas-
sifier for use with wearable sensors nodes. Numerical analysis 
was presented which supports our contention that a tiered 
wake up approach can reduce power usage with a minimal 
reduction in accuracy. 

Avenues for future work on this framework center around 
extending from sensor nodes to networks. For the case of a 
body-worn sensor network, there are two approaches assum-
ing the goal of detecting the current state while minimizing 
overall power usage. If in any given state one node is the 
network will be superior to the others, those nodes can share 
their current state with the other nodes, allowing them to 

reduce their data collection or turn off entirely. If data from 
multiple physical locations make some state determinations 
easier than if done at a single node, the data in question can 
be shared. In either case, this information can easily be added 
to the decision tree construction algorithm with a cost based 
on the energy expended to wirelessly transmit and receive the 
data.
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