
EXPERIENCES AND DIRECTIONS IN PUSHPIN
COMPUTING

Joshua Lifton, Michael Broxton and Joseph A. Paradiso
Responsive Environments Group

MIT Media Lab
Cambridge, MA 02139

Abstract— Over the last three years we have built and experimented
with the Pushpin Computing wireless sensor network platform. The
Pushpin platform is a tabletop multihop wireless sensor network testbed
comprised of 100 nodes arbitrarily placed within a one-square-meter
area. The Pushpin platform’s concise form factor and extreme node
density allow for fine-grained control of its environment and immediate
user interaction, thereby uniquely situating it between simulated and
real world sensor networks. This paper details our salient successes and
lessons learned along the way. We also discuss how these experiences
have shaped our vision of the future of wireless sensor networks and
some concrete research directions to follow.

I. INTRODUCTION

The wireless sensor network research community has grown
tremendously in the last several years. Work in simulation accounts
for much of this growth. Of the work done on actual wireless sensor
network hardware platforms, much of it has been confined to only
a few platforms, such as the University of California at Berkeley
motes or the Compaq iPaqs. Use of other platforms typically remains
confined to the platforms’ creators and their associates. In many
respects, this situation works well – most researchers can share a
small set of common, well-supported platforms and don’t need to
worry about hardware implementation details, while a small number
of researchers can experiment with their own custom systems that
perhaps provide functionality not available elsewhere. One of the
downsides of this situation, however, is that much of the knowl-
edge gained from implementing a wireless sensor network hardware
platform is never passed on to the rest of the research community,
which more often than not only sees the finished product and does
not benefit from the knowledge gained along the way. In the spirit
of this workshop, this paper is a small step toward countering this
trend.

The Pushpin platform uniquely combines many of the affordances
of simulated sensor networks, such as precisely controlled experi-
ments, ease of use, and user interaction, with the benefits of real-
world sensor networks, such as real data collected from the physical
world, realistic communication channels, and continuous real-time
operation. These characteristics have allowed us to effectively strad-
dle simulation and the real world.

In what follows, we give an overview of the process of building
up and working with the Pushpin Computing wireless sensor network
platform and attempt to distill out generally applicable lessons, both
successes and failures. Along the way, we discuss how working
with our own hardware platform has informed our vision of sensor
networks and suggest several avenues of future research.

II. PUSHPIN OVERVIEW

Development on the Pushpin Computing platform began in earnest
almost three years ago as an attempt to build a prototyping platform
for extremely high density distributed wireless sensor networks. As
such, it includes low-maintenance, easily reconfigurable hardware,

a set of mature software libraries, and a suite of interactive pro-
gramming and debugging tools. This section describes the Pushpin
platform as it exists today. The lessons learned during its evolution
will be discussed later.

A. Hardware

Each node, or Pushpin, consists of four easily swappable stacked
modules, one each for power, communication, processing, and sens-
ing/actuation [1]. See Figures 1 and 2.

Fig. 1. This expanded view of a single Pushpin shows each of the four
standard modules. When assembled with the modules shown here, a Pushpin
is 3-cm in diameter by 3-cm high.

Perhaps the most immediately salient feature of the typical Pushpin
platform configuration is that each node receives power from two
insulated prongs that are inserted into a polyurethane foam substrate

Presented at the IPSN/SPOTS '05 Conference in Los Angeles, CA on April 25-27, 2005

Fig. 2. Each Pushpin node is comprised of four modules separated by
function (shaded boxes). Each module makes available certain well-defined
resources to other modules (arrows pointing from provider module to recipient
module). Although various power, communication, and expansion modules
have been built and used, the current standard Pushpin configuration includes
a two-pronged power module, an IR communication module, and a sonar
time-of-flight module.

and make electrical contact with two conductive planes (power and
ground). See Figure 3. This setup requires very little maintenance
(e.g., no batteries to change) and allows for up to 100 Pushpins to be
arbitrarily placed on a planar surface and remain within arm’s reach
of the developers.

Pushpins communicate at 96-kbps using infrared communication
hardware on the infrared (IR) communication module, where an IR
transceiver points in each of the four cardinal directions, thereby
enabling communication with neighboring nodes. The transmit lines
of the four transceivers are tied together to a standard hardware
UART transmit pin, whereas the receive lines are multiplexed to the
same UART’s receive pin, allowing each receiver to be independently
accessed. Precise received signal strength information is provided by
external interrupt pins attached to each of the transceivers’ receive
lines and relies on the fact the duration of a received IR pulse is a
function of the distance between transmitter and receiver. In order to
more evenly disperse the transmitted IR in all directions, a frosted
polycarbonate ring is placed around each Pushpin. See Figure 4.

The short range of IR communications makes the Pushpins an ex-
ceptionally compact platform that realizes a wireless sensor network.
RF communication would be difficult to constrain at this short range;

Fig. 3. The 1.2-m by 1.2-m foam substrate into which Pushpins are inserted
provides power and ground connections, alleviating the need for batteries. As
the name suggests, Pushpins can be inserted and extracted from the substrate
as easily as a thumbtack from a corkboard.

Fig. 4. Images taken from the output of the IR-sensitive video camera
monitoring the Pushpin network. The left image is a top-down view of a
Pushpin transmitting on all four IR channels without an IR diffusing ring.
The right image is the same Pushpin with an IR diffusing ring added to
create a more omnidirectional and confined communication zone.

any node broadcasting RF would likely be received by the entire
network. Figure 5 illustrates a number of representative IR broadcast
ranges, which clearly do not conform to the uniform discs so often
assumed in simulation.

The Pushpin processing module contains an 8051-core, 8-bit, 22-
MIPS microcontroller made by Silicon Labs (formerly Cygnal) [2].
This processor has 2.25-Kbytes of RAM and 32-Kbytes of non-
volatile flash memory. It runs off a 22.1184-MHz external crystal,
but can also run off a software-adjustable internal oscillator for low-
power operation. The processing module provides a host of on-
board digital and analog peripherals to the sensor/actuator expansion
module through a 25-pin header. See Figure 2.

In addition to the original three hardware modules just described,
the most recent sensor/actuator expansion module is comprised of:

• RGB LED with each color channel individually pulse-width-
modulated.

• Electret audio microphone conditioned to provide both the raw
signal and an 87-Hz cutoff low-pass filtered envelope of the
signal to the ADC.

• 40-kHz ultrasound receiver conditioned to provide a digital
software-determined threshold detection signal wired to an ex-

Fig. 5. A schematic representation of actual network data taken from the
Pushpins. The neighborhood of nodes with which a Pushpin can communicate
varies considerably from Pushpin to Pushpin. The dark, solid circle in each of
the above frames indicates a Pushpin that is constantly transmitting packets
via IR. The filled circles with bold outlines indicate which of the surrounding
nodes reliably receives the packets directly from the originating node. The
single unfilled circle with a bold outline in frame three indicates a node that
sporadically enjoyed good reception. Aside from this one exception, all other
nodes in the neighborhood received virtually 100% of the transmitted packets.
Note that there was no other network traffic and the neighborhoods shown only
depict one-way communication. In particular, the transmitter in frame four
belongs to the neighborhood of the transmitter in frame one, but not the other
way around; clearly, the neighborhoods shrink if two-way communication is
required for membership. Each frame is approximately 1 meter on a side.

ternal interrupt. The raw sensor signal and a 400-Hz cutoff low-
pass filtered envelope of the signal are wired to the ADC.

• Phototransistor conditioned to provide a high-pass filtered digital
flash detection signal to an external interrupt and a raw sensor
signal proportional to light intensity to the ADC.

An infrared spotlight illuminates the entire Pushpin substrate to
serve as a one-way global communication channel to all Pushpins
from a personal computer. The spotlight can be used to simultane-
ously start or pause the entire network, change run-time parameters,
request Pushpins meeting certain constraints to provide visual feed-
back for diagnostic testing, and upload new code to all Pushpins in
parallel. Such commands can be received by a Pushpin via either
the standard IR communication module or the phototransistor on
the time-of-flight expansion module; the former takes advantage
of a mature communication library whereas the latter allows for
microsecond-level timing by means of the external interrupt attached
to the phototransistor. Using the spotlight, all the Pushpins can be
reprogrammed with a new operating system in less than a minute. In
essence, the spotlight imparts the Pushpin platform with many of the
ease of use characteristic of simulations.

A single gateway Pushpin acts as a two-way communication link
between the network and a personal computer. The gateway Pushpin
is communicates with neighboring nodes within a restricted local area
like any other node in the network. Individual queries can be issued
and answered through the gateway Pushpin.

At a very coarse, but extremely useful level, all infrared commu-
nication between nodes is monitored visually using a low-end black
and white camera that views the entire Pushpin substrate. Figure 4
shows close-ups of freeze frames of the output of the camera.

See Figure 6 for a full view of the Pushpin experimental setup.

Fig. 6. The Pushpin experimental setup consists of the power substrate
containing all the Pushpins, a gateway Pushpin connected to a PC running an
integrated development environment (IDE), an IR spotlight for communicating
with all Pushpins in parallel, and an infrared-sensitive camera and accompa-
nying video screen to view the entire network’s communication patterns.

B. Embedded Software

Each Pushpin has a minimal bootloader to receive, verify and load
new machine code over the IR communication channel, usually from
the IR spotlight. The bootloader can detect and correct communi-
cation errors and maintains a versioning system so as to write only
new code to memory. On top of this, users have available to them
a communications library with mechanisms for unacknowledged and
acknowledged packets, gradient diffusion broadcasts, and splitting a
payload into multiple packets. Other libraries exist for time-keeping,
hardware initialization, sensing, actuation, and other standard micro-
controller tasks.

C. Development Tools

The primary language for writing Pushpin programs is the variant
of C specified by the Small Devices C Compiler (SDCC), which
serves as the underlying toolset for compiling and linking code. Once
all Pushpins are equipped with the bootloader, all further development
takes place using a custom integrated development environment (IDE)
written in Python. The IDE manages code compilation and uploading
to the Pushpins over the IR spotlight as well as monitors and logs
network traffic over the gateway Pushpin. An arbitrary number of
application-specific graphical user interface panels (written in Python
using wxPython) can be easily incorporated into the IDE. These tools
are open source and cross-platform. Figure 7 shows a screen shot of
the IDE.

III. RESEARCH SPACE & HISTORY

The initial goal of the Pushpins was to implement and test in
hardware many of the ideas put forth by Butera in his Paintable
Computing simulation work [3], which revolved around the idea of
realizing desired behaviours in sensor networks as the global result
of local interaction among many autonomous “process fragments,”
similar to how global thermodynamic quantities such as pressure
and temperature are the result of local interactions among particles
governed by the laws of physics. This initial goal influenced many
of the Pushpin design decisions. For example, the Pushpins use a
microcontroller with a relatively large amount of RAM so as to ac-
commodate many mobile process fragments within a single node. The

Fig. 7. The application-specific panels can be easily added to the Pushpin IDE
to compliment the standard packet handler, compilation, and data collection
interfaces.

two-prong power delivery mechanism was also inspired by Paintable
Computing’s disregard of energy conservation concerns in favor of
concentrating on algorithms and programming models. Finally, the
original Pushpin operating system was a direct implementation of the
Paintable programming model, complete with blackboard-like state
mirroring across neighboring nodes and mobile process fragments.
The details of this first instantiation can be found in [1].

Of course, one of the benefits of having an actual sensor network is
that it can sense and interact directly with the real world. Accordingly,
recent work with the Pushpins has focused on collecting sensor
data for both in-network and off-line analysis. In particular, we’ve
experimented with several approaches to localizing the Pushpins
based on light, audio, and ultrasound data, using techniques such
as lateration, spectral graph drawing, and mesh relaxation [4], [5].

The small physical scale of the Pushpins suggests another direction
of sensor network research, namely scaling down sensor networks
to the point where they resemble something like biological skin in
terms of sensor density. Although nowhere near actual skin sensor
density, the Tribble project made use of the Pushpins to realize a 32-
patch electronic skin with each patch instrumented with vibration-
sensitive whiskers, photodetectors, microphones, pressure sensors,
and temperature sensors [6]. See Figure 8. The patches comprising
the spherically shaped Tribble communicated neighbor-to-neighbor to
route high-level representations of local sensor data and coordinate
an appropriate reaction using each patch’s local RGB LED, speaker,
and vibrating motor. An overview of our vision of sensate skin is
given in [7].

In addition to use within our own research group, Pushpins have
been used by others in a variety of ways. For example, a battery
power module, radio communications module, speaker actuation
module, and magnetic field sensing module, among others, have
been developed by the Viral Communication Group at the MIT
Media Lab in order to implement, test or model a variety of ad-
hoc wireless networks [8], [9]. A group in the MIT Department of
Physics has used modified Pushpins as a distributed data collection
network in an experimental particle detector [10]. Pushpins have also
individually been used as a prototyping tool for a large variety of
projects unrelated to sensor networks.

Although the Pushpin platform is a research facility, it has also

Fig. 8. The Tribble, a sphere tiled with a peer-to-peer wired sensor network,
is a coarse manifestation of how sensor networks might be scaled down to
form ‘electronic skin.’

inspired other groups to build applications in ubiquitous computing
around networked pushpin interfaces, e.g., [11].

IV. LESSONS LEARNED

This section chronicles, in no particular order, some of the many
lessons we learned in building and using the Pushpin platform.

A. Connecting Simulation & Reality

Having initially undertaken the Pushpin project as an implementa-
tion of the Paintable simulation, the differences between simulation
and reality very quickly became apparent. While some simulations are
better than others, no matter how detailed the simulation, there will
always be differences with reality. From a practical standpoint, there
are three approximately distinct categories of real-world limitations
from which such differences arise: energy (e.g., finite absolute quan-
tity or finite consumption rate), communication (e.g., finite capacity),
and sensor data (e.g., non-zero noise and finite resolution).

When building a hardware platform from scratch, it is surprisingly
easy to get caught up in attempting to simultaneously and optimally
overcome all these limitations. While this may result in a more robust
platform suited for deployment in the real world, the benefits of
overcoming all these limitations at once generally require the kind
of time and effort antithetical to quick prototyping principles. With
this in mind, the Pushpin platform was designed to overcome real-
world limitations only so far as doing so makes for a more realistic
simulation-like environment nimble enough to use for quickly proto-
typing hardware and algorithms. The design decisions and trade-offs
are discussed below.

1) Energy Limitations: A large body of wireless sensor network
research revolves around energy efficiency – routing schemes, MAC
protocols, network maintenance algorithms, and tracking applications
are among the many areas that have been optimized for energy
efficiency. All of this is important work and essential to creating
viable real-world sensor networks. That said, the Pushpins were
designed to never have to confront this difficulty. Not having to
change or charge batteries or design around strict energy constraints

has allowed us to concentrate our efforts elsewhere. This decision has
played out well in that the problems associated with limited energy
resources can be easily isolated or simulated. For example, rather than
determine the energy load by the frequency of battery charges, we
can accumulate statistics of node performance to infer the Pushpins’
power drain. In general, unless the main thrust of a project is energy
efficiency, we’ve found it best to abstract the problem away and worry
about more central aspects of the project.

2) Communication Limitations: Unlike energy limitations, the
details and effects of communication within a wireless sensor network
are not so easily decoupled from other problems, and therefore do
not so readily lend themselves to accurate simulation and analytic
methods.

Whereas most wireless sensor network platforms take wireless
to mean radio, the Pushpins use infrared. Infrared is more easily
confined to short distances and therefore lends itself to building
multi-hop networks on a physical scale that would otherwise be
a one-hop network if radio were used. This small scale facilitates
benchtop experiments in which the network can be stimulated in
a controlled manner, such as projecting an image on top of it
or precisely placing acoustic sources around it. Fading as seen in
RF communication could even be crudely emulated by introducing
smoke or fog. Infrared is also more readily debugged – the infrared-
sensitive black and white camera monitoring the Pushpins has been
invaluable to quickly identifying gross communication patterns and
malfunctioning hardware.

The specifics of RF undeniably affect the outcome of certain
experiments, and may themselves be the focus of those experiments.
However, there is also significant overlap in the challenges associated
with RF and IR communication, as evidenced by the large body of
research concerning network protocol layers above the physical layer.
For example, medium access control must be addressed regardless of
the choice of IR or RF.

More generally, a fundamental characteristic of sensor networks is
that the nodes communicate with a small (relative to total network
size) set of nearby nodes. The exact communication channel used
is important, but secondary nonetheless. Even the term ”wireless” is
somewhat misleading; a wired sensor network can also be constrained
to nearest neighbors, as in Tribble. Although the wireless case
is clearly more difficult, many of the data collection and routing
algorithms developed for wireless sensor networks apply equally well
in the wired case.

3) Sensing Limitations: Real-world sensing presents a host of
problems difficult to emulate in simulation, such as sensor calibration
and noisy signal sources. For this reason, we’ve found that even
simply treating the Pushpins as a collection of sensors that individu-
ally log data for off-line analysis can be of great value for building
intuition about sensing problems and formulating possible solutions.
The ability to trivially synchronize all Pushpins according to the IR
spotlight is especially useful in this respect.

B. Mobile Processes & Virtual Machines

As mentioned in Section III, the first fully functioning version of
the Pushpins supported mobile processes, where we loosely define
a process as a piece of executable code and a set of persistent state
variables. A single copy of a mobile process was confined to a single
Pushpin, but could copy itself to other Pushpins and interact with
other processes, both locally and remotely via mirrored blackboards,
in order to form more complex processes spread over many nodes and
composed of many mobile processes. The original implementation
of mobile processes relied on an underlying operating system to

transfer machine code between nodes. Mobile processes were created
by compiling C source code into native machine code, injecting the
process into the Pushpin network through a gateway node, and letting
it autonomously propagate through the network.

This scheme worked, but suffered from two intimately connected
inefficiencies. Firstly, the semantic and syntactic mismatch between
the C programming language and mobile processes made develop-
ment somewhat cumbersome and prone to error. Similarly, mismatch
between microcontroller machine operations and the high-level op-
erations that form the basis of mobile processes made for mobile
processes containing a large amount of machine code. Given that all
this code must be transferred between nodes and that communication
is typically the largest energy sink for energy constrained nodes, this
scheme for mobile processes would not generalize well beyond the
Pushpins.

We believe the solution to both these problems is to develop a
programming language and associated compiler-virtual machine pair
more suitable for sensor network applications. Some progress has
already been made in this area [12], [13]. Virtual machine primitives
should be able to easily and concisely represent expressions such
as “propagate to all neighbors with vibration sensor reading greater
than 23” or “route a message back to a query source with priority 3.”
The syntax employed by the Python language for list comprehensions
may be well suited for such tasks [14].

C. Inexpensive Sensor Networks

The cost of parts alone for a single Pushpin is approximately $50
in quantities of 100. This high per-node cost reflects the considerable
onboard resources and flexibility of the Pushpins, but it also limits the
number of nodes in the network. Wireless sensor network hardware
research in general seems to favor feature-rich nodes over quantity of
nodes, yet many of the algorithms and simulations being researched
rely on asymptotic behavior as the number of nodes increases. There-
fore, we believe there is a strong case for developing wireless sensor
networks composed of up to hundreds of thousands of inexpensive
nodes. Our research group has already developed “dumb” sensors
capable of transmitting a single bit over a 300-MHz radio when
activated by very slight vibration [15]. In large quantities, we project
the cost per node to fall under a dollar. Augmenting these nodes with
simple radio receivers and a reprogrammable microcontroller would
make for a full-fledged and inexpensive wireless sensor network. Not
only would this allow for larger sensor networks, but it would also put
real sensor networks within the financial grasp of more researchers.

D. Development Tool Set

In the beginning of the development of the Pushpins, we used
a commercial IDE and commercial compiler, linker, and assembler
suite. As stated in Section II-C, we have since migrated to entirely
open source software for primary Pushpin development. This move
has granted us a great deal more flexibility in what we can do and how
we can do it. We have also taken care to maintain platform neutrality
in the sense that primary Pushpin development can be carried out on
the major operating systems (GNU/Linux, Mac OS X, and Microsoft
Windows). Demand for such an integrated development environment
for sensor networks and microprocessors in general appears high
enough that we are considering releasing a generic version of our
tool set.

E. Absolute Scale & Tiered Sensor Networks

There is a certain ideological appeal to envisioning sensor networks
as composed of n identical nodes, where the application under consid-
eration only improves as n increases, allowing for arbitrarily scalable

networks. However, in working with a real sensor network, we were
constantly reminded of the physical world’s strong scale dependence.
At the most fundamental level, the physical world must conform to
the absolute scales imposed by constants such as the speed of light,
an electron’s charge, and Planck’s constant. These constants in turn
determine macroscopic physical characteristcs, such as propagation
speeds and attenuation rates, of the physical phenomena of interest
to a sensor network. In short, many, if not most, sensing tasks have
well-defined spatial and temporal scales, thus dispelling the need or
desire for arbitrarily scalable sensor networks. In place of arbitrary
scalability, we found tiered hierarchy with scalability within each tier
to be more fitting a design point. This is not to say scalability isn’t of
concern, but rather that scalability within certain bounds and arranged
in a hierarchy may be more appropriate. Many aspects of biology,
especially vertabrate nervous systems, seem to follow this principle.

From a practical standpoint, this means the absolute scales and tiers
of the hierarchy should be made explicit when designing distributed
sensor network algorithms (e.g., leader election). It further suggests
a sensor network hardware design that explicitly incorporates nodes
of varying abilities and resources from the very beginning instead of
as an afterthought. We intend to pursue these lines in future work.

F. Sensor Network User Interface (SNUI)

In working with an actual hardware platform, the problem of
usability becomes apparent. Without a simple user interface, wireless
sensor networks will remain relegated to use only by experts, very
much like computers were until the graphical user interface (GUI)
opened the field to non-experts and led the way to widespread use of
personal computers. Indeed, a sensor network user interface (SNUI)
is needed to allow non-expert users to retrieve data from and enter
information into sensor networks. One clear path toward a SNUI
is to bridge the gap between wearable computers (some of which
could themselves be considered sensor networks) and wireless sensor
networks.

Rather than consider SNUIs as an eventuality, it may behoove
the research community to consider them as a priority, if for no
other reason than SNUIs will allow non-experts to help explore the
application space of wireless sensor networks. As with so many other
technologies, there is no guarantee that wireless sensor networks’
killer applications will be discovered solely by researchers.

G. Actuation

Sensing is only half the game. The other half is actuation. Tran-
sitioning from wireless sensor networks to wireless sensor actuator
networks is a natural step toward creating distributed closed-loop
control systems capable of regulating themselves and responding to
their environment. In addition, actuation will likely play a role in
developing the SNUIs discussed in Section IV-F. In the context of
the Pushpins, we’ve found the RGB LED on each node to be the
single most useful feedback mechanism we have to judge the state
of the network. In the context of the Tribble, sound plays an equally
important role. In addition, our research group has also implemented a
separate hardware platform for experimenting with parasitic mobility,
the idea that mobile nodes in a sensor network can conserve energy
by opportunistically attaching to and releasing from people or animals
as they pass through the network [16].

The seeming inevitability of enabling sensor networks with ac-
tuators also introduces the concept of self-calibration (as opposed
to auto-calibration, which refers to calibration without reference to
a ground truth). In self-calibration, a node acts upon itself and its

neighborhood to provide a ground truth and then calibrates accord-
ingly. This method of calibration assumes matched sensor/actuator
modalities and pre-calibration describing how a node’s actuator
affects the matched sensor. Where possible, self-calibration is perhaps
the easiest method of re-calibration.

V. CONCLUSIONS

We have given a broad overview of the Pushpin Computing
wireless sensor network platform and recounted some of the lessons
learned, including possible future research directions such virtual
machines, low-cost sensor network platforms, open development
tool sets, hierarchical sensor networks, SNUIs, and sensor actuator
networks.

VI. ACKNOWLEDGEMENTS

We would like to thank the Things That Think consortium and
other sponsors of the MIT Media Lab for their generous support.
Portions of this work are supported by National Science Foundation
grant #ECS-0225492.

REFERENCES

[1] J. Lifton, D. Seetharam, M. Broxton, and J. A. Paradiso, “Pushpin
Computing System Overview: a Platform for Distributed, Embedded,
Ubiquitous Sensor Networks,” in Proceedings of the International Con-
ference on Pervasive Computing, 2002.

[2] Silicon Laboratories, “Silicon Laboratories Homepage,”
http://www.silabs.com, 2003.

[3] W. Butera, “Programming a Paintable Computer,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2002.

[4] M. Broxton, J. Lifton, and J. A. Paradiso, “Localizing a Sensor Network
via Collaborative Processing of Global Stimuli,” in Proceedings of the
Second European Workshop on Wireless Sensor Networks (EWSN 2005),
January 2005, pp. 321 – 332.

[5] M. Broxton, “Localization and Sensing Applications in the Pushpin
Computing Network,” Master’s thesis, Massachusetts Institute of Tech-
nology, 2005.

[6] J. Lifton, M. Broxton, and J. A. Paradiso, “Distributed sensor networks
as sensate skin,” in Proceedings of IEEE Sensors 2003, vol. 2, October
2003, pp. 743 – 747.

[7] J. A. Paradiso, J. Lifton, and M. Broxton, “Sensate Media – multimodal
electronic skins as dense sensor networks,” BT Technology Journal,
vol. 22, no. 4, October 2004.

[8] J. I. Silber, “Cooperative Communication Protocol for Wireless Ad-
hoc Networks,” Master’s thesis, Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, June 2002.

[9] A. Bletsas and A. Lippman, “Natural Spontaneous Order in Wireless
Sensor Networks: Time Synchronization Based on Entrainment,” Viral
Communication Group, MIT Media Lab, Tech. Rep., December 2003.

[10] A. Werner, “A self-triggered readout for a time projection chamber,”
B.S. thesis, Massachusetts Institute of Technology, February 2004.

[11] K. V. Laerhoven, A. Schmidt, and H.-W. Gellersen, “Pin&Play: Net-
working Objects through Pins,” in UbiComp ’02: Proceedings of the 4th
international conference on Ubiquitous Computing. Springer-Verlag,
2002, pp. 219–228.

[12] D. Seetharam, “c@t: A language for programming massively distributed
embedded systems,” Master’s thesis, Media Arts & Sciences, Mas-
sachusetts Institute of Technology, September 2002.

[13] P. Levis and D. Culler, “Mate: A tiny virtual machine for sensor
networks,” in International Conference on Architectural Support for
Programming Languages and Operating Systems, San Jose, CA, USA,
October 2002.

[14] G. van Rossum and F. L. D. Jr., “Python tutorial, release 2.3.4,”
http://www.python.org/doc/2.3.4/tut/, May 2004.

[15] M. Feldmeier and J. A. Paradiso, “Giveaway wireless sensors for large-
group interaction,” in Proceedings of the ACM Conference on Human
Factors and Computing Systems (CHI 2004), Extended Abstracts, April
2004, pp. 1291–1292.

[16] M. Laibowitz and J. A. Paradiso, “Parasitic mobility for pervasive sensor
networks,” in Proceedings of the Third International Conference on
Pervasive Computing (Pervasive 2005). Springer-Verlag, May 2005.

