
Design of a Real-Time Adaptive Power Optimal Sensor System
Ari Y. Benbasat and Joseph A. Paradiso 

Responsive Environments Group, MIT Media Lab 
Cambridge, MA 02139, USA 

Email: {ayb,joep}@media.mit.edu 
 

 
Abstract 
Wireless sensors systems are currently being deployed in a 
wide variety of lightweight mobile applications such as 
distributed object tracking and wearable medical data 
collection. For such applications to enter the consumer 
mainstream, it is necessary for them to operate far more 
power efficiently than they do currently. Using a simple 
illustrative example, this paper explores some general 
design rules for techniques which can reduce power 
consumption by one to two orders of magnitude through a 
combination of real-time sensor selection based on system 
state and in-situ feature extraction before storage and/or 
transmission (if necessary). In the presented example, it is 
demonstrated that the use of both low and high accuracy 
sensors for a single parameter (acceleration) can allow 
system state identification to be far more power-efficient (in 
this case, by 94%) than with a single sensor alone. Use of 
sensors with short wakeup times will further improve this 
result. 
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INTRODUCTION 
Wireless sensor nodes and networks are currently being 
used in a wide array of applications. These include, but are 
certainly not limited to, distributed sensing and processing 
arrays[11], mobile data collection nodes[6] and wearable 
medical analysis systems[1].  In most cases, such systems 
leverage the coincident decrease in both price and size of 
the necessary components, particularly MEMS based 
sensors. 
However, such systems are often limited to prototype and 
experimental usage due to limited battery (and therefore 
system) life. The most common solutions to this problem 
are to tether the system to an unlimited power source[5] or 
limit the system to sampling at such a low rate that the 
lifespan is satisfactory[9]. Obviously, the full potential of 
wireless and wearable sensors is not being achieved 
through such systems, as their limited lifespans, sensing 
capabilities or update rates greatly reduce the utility to the 
end user, and therefore their marketability. Long-term 
medical monitoring, for example, is currently hindered by 
stationary sensors, which cannot provide a full picture of an 
active patient’s movements, or body-worn sensors, which 
require large battery packs and/or frequent replacement. 

While the progress of semiconductor technology will 
eventually bring lower power systems, battery life problems 
can be attacked today via a more careful approach to sensor 
system design. The outlines of such an approach are 
detailed in this paper. 

GOALS AND MOTIVATION 
The main goal of this work is to delineate a collection of 
design rules and techniques for the creation of power-
optimal sensor systems. Such systems can be defined as 
those which extract the necessary or desired information for 
the smallest outlay of power. While the processor and RF 
transceiver are generally considered the largest power 
drains in wearable systems, sensor power has become 
equivalent if not greater in many recent lightweight 
systems[12]. 
We wish to create general approaches for two different 
methods of power reduction. The first is the use of multiple 
sensors to measure a single parameter of interest. The vast 
majority of sensor systems limit themselves (usually in the 
interests of simplicity or compactness) to a single sensor for 
each modality of interest. No matter how efficient such an 
implementation is for its intended goal, it is guaranteed to 
be power inefficient in states were less (or more) data is 
necessary to collect all the available information. A system 
which can tailor its sensing in real-time to the current state 
of the device can draw far less power on average.  
The second approach is to use a number of different 
techniques for in-situ compression of data. Most sensor 
systems either transmit or cache all data without regard to 
expository value. Simple data processing and feature 
extraction can reduce this volume considerably for a small 
power investment. A further benefit is that the results of the 
compression operations could lead to a decision not to store 
and/or transmit the data at all. 
The motivation for this work is two-fold. In the short term, 
a decrease in power consumption increases the system 
lifespan, which directly correlates to utility and ease of 
adoption. Systems which are currently confined to 
specialized laboratories could be used in unconstrained 
environments, opening a large number of potential 
applications. In an example pursued by our group, wearable 
gait analysis systems could provide real-time feedback to 
the user, allowing for corrections which could help avoid a 
number of different injuries[10]. In the long-term, these 
techniques will continue to be of benefit in battery-powered 
systems. While key thresholds in user utility (e.g. a full 



day’s uninterrupted use for a medical wearable) may have 
been exceeded, these techniques will still provide the same 
percentage increase in system life and will therefore 
continue to allow for a greater application range than non-
adaptive systems. 

RELATED WORKS 
Srivastava has written a number of papers (e.g.[13]) 
examining the power usage of mobile nodes under a variety 
of conditions (data collection, wireless transmission, sleep, 
etc) and comments on how to select modes for processors 
and RF transceivers which are most efficient for their 
particular task. However, his work expressly ignores the 
issue of sensor power. 
Estrin’s[3] survey paper on pervasive networks mentions 
many of the techniques, both hardware and software, 
explored in our work, though only at the theoretical level. 
Specifically of note are comments on frequency of 
appearance of interesting data and the benefits of multiple 
modes of operation. 
Also, many sensor networks[8] use rotating cluster heads – 
an example of dynamical power optimality. However, such 
systems merely attempt to maximize network life by 
distributing power draw among the nodes rather than 
through increasing the life of each node. 
Similarly, systems employing passive wakeup[7] partially 
achieve the goal of state-based sensing, though they take a 
very binary approach to context. Our system is able to 
consider a much finer concept of state, and therefore can 
both respond more quickly and more appropriately. 

WORK TO DATE 
System Design 

 
Figure 1: Flowchart of Data Flow in Real-Time Power 

Optimal System 

The general design for our system is shown in Figure 1. 
This system is centered around the concept of what we term 
“groggy”, or semi-active, wakeup. Rather than have a 
sensor systems which is either fully active, collecting all 
possible data, or fully asleep, we envision a system with a 
number of different levels of activity. Each of these is 
designated by a state, which comprises the currently active 
sensors, their sampling rate and accuracy, and algorithms to 
describe both the state transitions and any processing of the 

data (if desired). This data is then either stored locally or 
wirelessly transmitted to a basestation. 
From a starting state, the system will analyze data and 
switch states accordingly. At any given time, it will attempt 
to collect as little data as possible to extract the available 
information (as defined by the application) from the 
environment. Further, the processor and sensors are put into 
a sleep mode between samples if possible. By definition, 
these two characteristics should provide power optimal 
sensing1. To allow for further power savings, compression 
algorithms can be applied to the data prior to storage or 
transmission. These algorithms will exploit the structure in 
the data with respect to the application to condense it to 
relevant features. Beyond this point, further data analysis is 
left to the application designer or an expert in the field. 
A concern with any wakeup based system is the potential to 
miss fast transient events - either entirely or during the 
wakeup/state analysis procedure. While this is a problem in 
general, it shouldn’t be in this case as we will concentrate 
on wearable sensor systems. Since most human activities 
take place on the order of seconds and state analysis 
requires on the order of tens of milliseconds, the chance of 
missing an event is slim. Also, a concern with any state 
based system is that important information will be not be 
gathered if it doesn’t fall within the data collection state(s). 
While can be avoided by making the states as broad as 
possible (without being inefficient), a better approach is to 
consider unsupervised state creation algorithms[3] in the 
design process. While more complicated, it should 
guarantee that the data collection states include all 
information of interest.  

Hardware 

 
Figure 2: Assembled modular sensor stack  

We have developed a compact wireless modular sensor 
architecture (Fig. 2). The system itself is comprised of 
boards (panes) 1.4 inches square and 0.4 inches high which 
are electrically and mechanically connected at the corners. 
Each pane instantiates a major function, with most 

                                                                 
1 Predicated on the assumption that the data is being collected in the most 

efficient way possible. We have separately tabulated[unpublished 
technical report] the best sensor choices given the parameter to measure 
and the number of bits desired. 

 
 



parameters being measured in multiple fashions. Key panes 
to this discussion are: 
• Inertial measurement unit board with three 
accelerometers (2 x Analog Devices ADXL202), three 
gyroscopes (1 x Analog Devices ADXRS300, 2 x Murata 
ENC-03J) and a four-direction passive tilt switch (ALPS 
SPSF100100). 
• Processor board with a Silicon Labs C8051F206 
22 MIPS processor and a RFM TR1000 115.2 kBps 
transceiver. This processor will be replaced by a TI 
MSP430F147, which has far lower power sleep modes and 
upon which the calculations below are based. 
Other panes include a tactile board with inputs for bend and 
pressure sensors; an ambient board with a cell phone 
camera, PIR motion detector and IR phototransistors; and a 
sonar board for two dimensional acoustic ranging. The 
system has been used to implement a number of 
applications, including a compact on-shoe gait analysis 
system[10]. 
This architecture is easily extensible with new panes, 
allowing for rapid prototyping of systems with numerous 
sensors for each modality, which will be used for testing of 
our designs and assumptions. As a preliminary test, we 
have repeated a small amount of data collection from the 
gait analysis system using the two boards detailed above. 
This data will be analyzed to determine the benefits of our 
proposed design. 

RESULTS AND DISCUSSIONS 
For the case of a shoe-mounted inertial measurement 
system, we have examined the benefits of dividing the 
operation of the device into three states: still, non-
ambulatory motion (twitching, swinging foot, jumping) and 
walking. In case each, we considered the data analysis 
necessary to determine transitions to the next state in the 
hierarchy. The still state is trivial, relying solely on whether 
the passive tilt sensors show any deviation from their 
previous state. This data is currently sampled at 15Hz, 
though transitions could also be used to trigger interrupts to 
wake the processor from a sleep state. Once motion is seen, 
it needs to be determined whether there is structure therein. 
This is achieved via analysis of the gyroscope data, again at 
15Hz. The data is analyzed first for motion beyond a fixed 
threshold (based on its variance). If this threshold is 
exceeded, the data is then examined for the regular three-
peaked structure created  by the foot lifting off the ground, 
swinging through its arc and returning to the ground. This 

data is separated both through peak counting and by 
confirming that the area under that segment of the graph is 
close to zero (since the foot starts and stop in the same 
orientation). More details on this technique can be found in 
[2]. If walking motion is found, the system is switched into 
a third state, where is collected data from each of the  
sensors at 100Hz. Note that the state determination analysis 
is still the same as before and therefore requires the same 
amount of power. These same tests are used in the reverse 
order to transition back down the states.  
Figure 3 shows a parsed data stream. The stream includes a 
number of different common motions such as walking and 
swinging the foot. We note that the system accurately finds 
the walking states with no false identifications2. Despite the 
fact that these preliminary results are based on a short 
scripted interaction, we are confident that the analysis 
techniques should generalize to longer, freeform streams 
based on positive experiences with these algorithms in 
previous work[2]. 

 
Figure 3: Parsed Data Stream 

Table 1 summarizes the system states. The percentage of 
time that the user is assumed to be in each of the states is an 
estimate based on personal experience and assumes the 
system is never turned off (even when not worn). We note a 
few points of interest. First, the system achieves a savings 
                                                                 
2 The recognition appears to miss the first step of each walking state 

because one cycle is necessary to confirm the transition. 

Table 1: Summary of states and power usage (µC: MSP430F147, Gyro: ADXRS300, Accel: ADXL202) 

State % 
of Time Sensors Rate Sensor 

Power 
Processor 

Power 
Total 
Power 

Weighted 
Contribution 

Still 90 Tilt 15 Hz Passive 1.1uW 1.1uW 0.11uW 
Non-Ambulatory 8 Tilt,Gyro 15 Hz 15mW 2.3uW 15mW 1.2mW 

Walking 2 Titl, Gyro, 
Accels (x2) 100 Hz 32mW 2.3uW 32mW 0.64mW 

   Total Average Power 1.84mW
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Table 2: Comparison of Power Cost of Common Data Operations (64 byte block, µC: MSP430F147) 

Operation Example Use Output Size Energy Consumption 
Wireless transmission Raw data transfer N/A 154 uJ 

FFT Find spectrum for state calculation 64 bytes 1.15 uJ 
Windowed Variance Feature extraction 1 byte 291 nJ 

N-tap Feedback Network Generalized filtering 64 bytes 190 nJ per tap 

of 94% relative to operating in the walking state at all 
times. The system also realizes a 43% savings compared to 
a binary state system. Both of these savings are constrained 
by the fairly high power usage of the non-ambulatory state, 
which is due to the slow wake-up time of the ADXRS300 
gyro. Other parts, such as the ENC-03J, may provide better 
results, but their documentation was not complete enough 
to allow for calculations. Also, we note that the processor 
power used is three orders of magnitude less than that of 
the sensors. Processing equivalent to approximately 10,000 
cycles per data point would be necessary to place the two 
power draws at the same order of magnitude. 
Generally, there are two main lessons here. The first is the 
key importance of wake-up time in any multi-state system. 
The slower the wake-up time, the smaller the benefit of 
power-cycling the device in the case of low update rates. 
The second is that common MEMS sensors draw far more 
power than the processing necessary to determine if their 
data is of value, which bodes well for the future success of 
this work. 

FUTURE WORK 
We consider two directions for future work. The first is to 
extend the analysis of the previous section. While strong 
results were achieved, the state assignment and data 
analysis were very ad-hoc. Using those results as a starting 
point, we wish to establish a set of general design rules and 
techniques, which can be used to create similar results for 
other types of data. Most straight-forward is generalizing 
the data stream analysis techniques such that they can be 
used with non-inertial data. More useful is to use the 
techniques themselves as a guide to create an unsupervised 
learning algorithm, which should be able to find similar 
states to those chosen by the authors. At very least, it 
should be able to find a number of interesting states which 
an application designer can then choose among. 
The second direction for future work is to consider 
algorithms for in-situ compression of data. This area again 
has the potential for large power savings, as the results 
should reduce transmission/storage or lead to a decision to 
forego it entirely. However, the compression algorithms 
first need to be defined and then tested for utility (bytes 
saved versus data lost).Table 2 gives examples of the power 
cost of a number of different operations on a 64 byte 
window, compared to the cost of transmitting that data 
outright. 
CONCLUSIONS 
We have created a general design for adaptive power-
optimal sensor systems. It is based upon a system with a 

number of different states, each using different sensors and 
analysis algorithms, and the use of multiple sensors for 
each parameter of interest. A preliminary test of a wearable 
gait analysis system, using our modular sensor platform and 
an ad-hoc assignment of states and algorithms, achieved 
very strong results and provided important directions for 
future improvement and generalization of our system 
design. 
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