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ABSTRACT

We describe a framework for a wireless sensor-based mobile
music environment. Most prior work in this area has not
been truly portable, or has been limited to simple tempo
modification or selection of pre-recorded songs. The excep-
tions generally focused on external data rather than dy-
namic properties and states of the listener. Our system ex-
ploits a short-range wireless sensor network (using the Zig-
Bee protocol and inertial sensors) and a compiler for Pure-
Data, a graphical music processing language. We demon-
strate the system in an interactive exercise application run-
ning on a Nokia N800.
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1. INTRODUCTION

Many people with portable music players use them to
generate soundtracks to their lives[5]. What would be more
appropriate than being able to generate these soundtracks
based on the activity being done at the time? For example,
if a user went jogging, a system could synchronize the music
to the rate at which he/she were running. Alternately, it
could encourage the user to speed up or slow down as part of
a exercise program[10]. This responsive environment would
be able to synchronize to any periodic motion, such as their
warm up or cool down period[17]. Dynamic leading or lag-
ging can regulate the user’s activity, encouraging exercise
at the currently optimal pace. Going further, an array of
simple body-worn sensors could immerse the jogger in mu-
sic, with any motion producing appropriate sound. This
paper describes a compiler for the well-known graphical mu-
sic control and synthesis language PureData (PD), which,
together with a simple wireless sensor network, enables effi-
cient implementation of interactive music on a commodity
handheld computer. Such systems promise to revolutionize
the portable music player experience, ushering interactive
compositions that never sound the same and need to be
physically explored to be heard.

PDJ[13] is a versatile language which was primarily de-
signed for audio processing, although various extensions
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allow it to handle OpenGl.-based graphics[1] or random-
access full-motion video[2]. However, the fundamental de-
sign of PD’s runtime allows certain actions to be calculated
in bulk (so called “signals”, typically carrying audio data)
while others are much more computationally intensive due
to the amount of overhead from PD’s interpreter (‘“mes-
sages” — short lists of words and numbers).

In the past, many wearable music systems — either fully
wired (like some of the very first systems), wired personal
area networks[15] or fully wireless[11, 12, 4, 14] fed infor-
mation to a central computer that analyzed the data and
generated audio. This is fine for performance or other ap-
plications with small active areas, but does not allow for
an experience that follows the user, particularly in cases
where the user cannot accommodate comparatively heavy
equipment like a laptop. Other projects exploring interac-
tive music for exercise [17, 6] focused on only modifying the
tempo and/or selection of pre-recorded songs to synchro-
nize with the user, avoiding direct synthesis of real-time
interactive music.

Gaye, Mazé, & Holmquist[7] and Vawter[16]invent a world
very similar to what is envisioned for our project, involving
deciding on a context from sensor data, and emphasizing
natural rhythms heard by the wearer. However, their em-
phasis is more on integrating into the listener’s city experi-
ence, and less on exercise.

Previous work in this direction has included PureData
Anywhere (PDa)[8] — a port to embedded systems. Due
to the common absence of floating point hardware on such
processors, PDa made a compromise: floating point math
would continue to be used for message logic, but 13.19 fixed
point math would be used for the audio signals. This re-
quires a dramatic difference in the function of two PD ob-
jects (tabread™ and tabwrite”, which read and write audio
data to look-up tables), and doesn’t help for control-heavy
applications, such as those with frequent sensor polling, be-
cause the use of floating point emulation for control signals
is very slow.

2. COMPILER

Our PD compiler presents a middle ground between PD
and a lower-level language like C, with much of the ease of
use of PD and much of the speed of C. By using a highly
optimizing C compiler, many of the inefficiencies due to
mechanical translation are further eliminated. For exam-
ple, many objects in PD patches have exactly one incoming
connection. A good C compiler, if told to optimize suffi-
ciently, will take these objects and put them inside their
callers. Further optimizations would then go and find re-
dundant checks on the data type of the incoming message
and discard the second set of checks.

Since we are converting between one format to another
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Figure 1: Histogram of time to multiply 2?° floating

point numbers. Left to right: Time to run the patch
in PD, time to run the patch when compiled in GCC
using the “no optimizations” flag (-00), time to run
the patch when compiled in GCC using the maximal
optimizations (-03)

of text, we have written the compiler in Perl. Perl excels at
parsing text, especially rigidly defined text like PD’s save
format. After parsing the entire file into a structure in mem-
ory, we execute the generators for all the objects that pro-
duce the C code for each.

The compiler takes in a plain text PD patch file and pro-
duces C output. This allows us to take advantage of the
large amount of work that other people have put into opti-
mizing compilers without having to implement it ourselves.

The PD Compiler (PuDaC) replaces each object with a
uniquely-named subroutine (and possibly some uniquely-
named globals). Each “wire” connecting objects is replaced
with directly calling the connected object.

The compiler runs in two passes (three if you include the
additional stage of running gcc). First it parses the input
file, loading all the objects into an associative array with
a UID for the object as the key. The value of each en-
try is an another associative array with several predefined
entries specifying the object’s arguments, the C represen-
tation of the objects attached to the inlets and outlets of
the object, the C-generating perl code for this object, and
a redirection specifying that the object has another name
(like sel / select). Then it prints a prologue, executes the
C-generating perl code for all objects, and prints the main
function. This model makes debugging tremendously eas-
ier, although it is probably significantly less efficient than
is possible. More details are presented in [9].

Still, a simple test patch (doing one million floating point
multiplies) shows a significant performance increase over the
plain interpreter: on an Athlon (Thunderbird core) running
at 1066 MHz, PD takes an average of 533ms, compared to
as little as 158ms for the output of the optimized compiler,
about 30%. (Histograms of trials are in Figure 1. The
variance was consistently %th of the mean, probably due
to the way the Linux scheduler works)

3. PHYSICAL INSTANTIATION

Nokia’s N800 (figure 2) is a small portable computer
(measuring 2.95 x 5.66 x 0.51 inches, weighing 7.26 ounces).
It includes bluetooth, 802.11g, an ARM11 processor, a dedi-
cated DSP, and runs the Linux-based Maemo internet tablet
software suite. It shares general features with similar hand-
held computing devices, so the exact choice of platform is
flexible.

There are a variety of small single board computers that
are capable of running Linux — for example, Gumstix makes
a suite of Intel XScale based boards that range from slightly
less powerful than the N800 to dramatically faster[3]. How-

Figure 2: The Nokia N800 (right), with serial
port exposed in an open back to show our custom
adapter (left)

Figure 3: Front and back of the RF microcontroller
to be attached to N800

ever, the Gumstix computers do not have their own battery,
and the N800 has a floating point unit and agile user inter-
face, making the amount of initial investment to get a useful
system from an N800 much lower.

Our present requirements are sufficiently nongraphical to
accommodate any battery-powered Linux machine with an
FPU and a serial port (the N800’s is in figure 2). That
said, future incarnations of the system will benefit from the
N800’s interface in customizing the user’s experience, much
in the way parameters are set and adjusted on conventional
music players. Additionally, we’ve minimized platform de-
pendencies (beyond network in and audio out), so it should
be straightforward to adapt this work to any other platform
regardless of the overall requirements.

The sensor system is very straightforward. FEach sensor
should use a microcontroller, a simple radio, and appro-
priate sensors (e.g., multi-axis accelerometer, gyro, etc.).
When we were introduced to the CC2431, it looked like an
ideal solution, because it had almost everything needed al-
ready in it. It’s tolerant of a wide range of voltages and so
could be run directly off a battery, contains an ADC, and
contains its own integrated ZigBee radio. All we had to add
were the sensors. We use one CC2431 as a coordinator to
initialize and gather the sensor data from all the others.

The wireless protocol for this application exhibits sev-
eral features: many transmitters, one receiver, no real need
for collision detection, low bandwidth per transmitter (less
than two kilobits per second), moderate-to-low aggregate
bandwidth (less than a megabit per second), low latency,
and permissibility of dropped data. Each node needs a coin
cell, a low-power microcontroller, a transmitter, and an ap-
propriate array of sensors. TI’s ZigBee implementation was
chosen as it meets or exceeds these requirements.

T1 provides, without charge (although with rather restric-
tive licensing terms) a software suite they call the Z-Stack,
which provides a complete implementation of the ZigBee
2006 protocol, versatile enough for any use. However, the
system is sufficiently large (since the standard is so com-
plex) that it easily fills the vast majority of the 128kB of
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Figure 4: The final mapping used — several sounds
are synchronized and queue from the user’s motion

program space available to the program.

ZigBee is an RF standard designed for a variety of low-
bandwidth applications. Multihop mesh routing is a pri-
mary feature, although useless in this specific application
since it imposes a significant latency cost and wearable sen-
sors are within 1-hop proximity. Furthermore, unlike a sim-
pler off-the-shelf design (like a 9600 bps wireless modem),
this is much more extensible to a large number of sensors
and has better guarantees of data transmission.

The 5-axis IMU (Inertial Measurement Unit) board from
SparkFun FElectronics uses an Analog Devices ADXL330M
and an InverSense IDG300. The ADX1.330M measures +3.6
g on all 3 axes, and is configured to give a 50Hz bandwidth.
The IDG300 measures +500° /s about the two axes not nor-
mal to the chip, and has a 140Hz bandwidth.

Inertial sensors provide the only way to determine how
the user is moving without an external fixed reference. This
IMU measures the user’s footsteps, since landing on the
ground 1s a large change in acceleration; however, the sys-
tem also responds to fast foot swings and works relatively
well on other parts of the user’s body, such as the wrists.

The bridge between the N800 and our RF network (pic-
tured in figure 3) contains a low-power microcontroller (to
which bridge-mounted sensors can also be attached) and
a 7ZigBee transceiver. More interesting mechanically than
electrically, this involved attaching wires to the test pads
inside the N800, using a LM1086 to regulate the Lilon bat-
tery voltage to 3.3V for the CC2431, and bending things
into a nice flat shape to fit nicely behind the N&80O.

The N800 contains a serial port, apparently included for
debugging the system in the factory. By using the flasher
tool to enable the serial port, and disabling the getty nor-
mally running on the serial port, we can use the serial port
to receive arbitrary low-bitrate data (115200 bps, 8 bits per
byte, no parity, one stop bit — this is restricted, and appears
to be an intentional crippling of the driver in the Linux
source tree). Transmission is also possible, although the
kernel and applications on the system send large amounts
of debugging messages to the serial port and would have to
be silenced first. A 33k pulldown resistor is needed be-
cause the N800’s serial port picks up ambient noise on the
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Figure 5: Graphs of results for walking (top) and
jogging (bottom)

receive line, in turn causing it to reset.

The hardware serial port is very convenient since both it
and the CC2431 support 3.3V logic-level serial. The N800
also supports switching its USB port to run in host mode,
but using the internal serial port is simpler and smaller.

The microcontroller’s reports are sent as a 16-bit sensor
address followed by a series of 16-bit words. This small
program converts these into the PD-style [addresssymbol]
[space separated array of decimal numbers];,handles
the logical connection to the serial port and sends the re-
sulting PD-encoded datagram to a UDP destination of the
user’s choice, presumably to PD or the compiled patch. PD
does not easily support binary data, so an external con-
verter simplifies things tremendously.

4. EXAMPLE MAPPING

A working patch i1s shown in figure 4. The acceleration
and angular velocity from the IMUs are converted to jerk
and net angular rates. We then compute the ratio of local
means to local average deviations, note when they exceed a
given threshold, output this into a delay with holdoff. We
also compute the local maxima and minima along each axis,
and subtract to get a local dynamic range. The delay with
holdoff drives a phase-locked loop (PLL) that attempts to
match the phase and frequency of the input, which is at-
tached to simple logic that runs several audio patterns. The
dynamic range, rate of change of dynamic range, and cur-
rent beat rate are used to select which patterns are played.

An example showing how well it works is seen in figure 5.
The Z axis of the accelerometer (labeled a_z) was oriented
normal to the leg, in the direction of stride (because no



rotation was expected about this axis). The X axis (a_x)
was parallel to the leg. |Jerk| and |angular acceleration|
were calculated as the magnitude of the first backwards
differences on available axes. The detected and predicted
footfalls plots indicate a detection or prediction when they
change from low to high or vice versa. The period ranges
from 0 to 2 seconds. Both plots are approximately 40 sec-
onds (4000 centiseconds) long. The gap seen from 16-17
seconds in the bottom graph is because the data dumping
program momentarily paused.

For jogging data, both gyro and accelerometer data pro-
vided good impulse sources, and the detected footfalls plot
shows this. Unfortunately, as can be seen in both plots, the
predicted period oscillates with a period of 10 steps, never
really getting to the true pace (about 46/min when walk-
ing, 67/min when jogging). This is solely the fault of the
PID (proportional integral derivative) controller inside the
phase-locked loop. Later tuning should make this react bet-
ter. The predicted footfalls trigger the beats of a 4-measure
long drum loop and algorithmically launch other sequenced
patterns according to the actions of the user.

S. FUTURE WORK

The compiler is distinctly to the point where it produces
useful results, but it needs more effort to bring it to the
point where it could be used in a commercial setting. It has
a number of rough edges, as noted below, but can now be
used on an experimental basis for further development.

Currently, there is no support for external patches or sub-
patches. Since PD starts counting from 0 in each subpatch,
and the current implementation doesn’t recurse or handle
multiple instances, the patch has to be flattened by hand
before it can be compiled. Fortunately, flattening (an easy
but tedious task) only needs to be done once for each patch,
and (if the patch is known to be destined for PuDaC) can be
avoided altogether by not using subpatches. Furthermore,
implementing subpatches in PuDaC is not difficult but was
further down on the authors’ list of priorities.

For efficiency and putting similar code together, we should
aggregate similar objects. In PD, all the so-called “bin(a-
ry)op(eration)s” inherit from a common class, so that each
has only small fragments of C to specify the minor differ-
ences between them.

We have implemented a significant subset (approximately
70) of the total number of built-in objects in PD. There are
at least another 70 to go to just implement the core func-
tionality available in PD. We have, however, implemented
enough objects to enable many control patches without fur-
ther work, and adding additional built-ins onto the compiler
should be easy and done on an as-needed basis.

Because the N800 has a floating point unit, we did not
look into implementing automatic fixed point casting. As
such, the compiler is not yet very useful on integer hard-
ware such as cell phones or similar devices, but the small
size of the N800 and functional equivalents compares fa-
vorably with current portable audio players. Additionally,
several PD functions (such as cos™ and osc™) are imple-
mented using the FPU; for machines that lack a FPU, a
lookup-table based solution will be necessary.

Because the current implementation was oriented to op-
timize control patterns, the DSP engine is suboptimal and
behaves somewhat worse than PD’s engine. This is fairly
straightforward to fix, and then static analysis could be
used to choose optimal fixed point representations through-
out the DSP (and control) chain.

We can now make the sensor peripheral small enough
to be a feasible device: the microcontroller is a mere 7mm?

and the accelerometer is 5mm?. The largest part is the bat-
tery, and a CR2032 lithium coin cell, containing 700mW Hrs,
could run the system for multiple hours. Furthermore, the
single-item costs of this radio and accelerometer are $10
each, and the accelerometer already has lower cost versions.
It seems likely that the microcontroller’s bulk cost will drop
even more within the next few years. This will result in a
system that is both tiny and affordable for the end user that
can run on a mobile phone with ZigBee. This work hints
at a new art form going well below the simple music play-
back of the Nike iPod and essentially nonmobile Nintendo
Wii, where music must be physically explored to be heard.
When famous artists compose for this medium, the general
public will have a strong motivation to exercise.
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