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ABSTRACT
In this paper, we present a wireless sensor platform designed
for processing multipoint human motion with low latency and
high resolution. One application considered here is interactive
dance, in which a choreographer wishes to translate the
movements of multiple dancers into real-time audio or video
content to accompany the performance. This can only be
accomplished using a distributed measurement system capable
of responding quickly with enough information to describe
the expressive movements of multiple people. Similar
requirements exist for biomechanical analysis, especially in
the context of athletic training, where high resolution i s
demanded, and instant feedback is also desirable.

Our approach to addressing such aggressive requirements
involves a high-speed wireless network of compact inertial
measurement units (IMUs) that can be worn at various
locations on the body. Each device is equipped with its own
1Mbps radio link and a full six-axis IMU, as well as a
capacitive node-to-node proximity sensor. Currently, the
system supports real-time data collection and processing for
up to 25 nodes with 100Hz full state updates, thereby
handling much higher data rates than its predecessors. With
locally buffered data, sample rates of up to 1kHz have been
achieved successfully. Early results discussed here
demonstrate the feasibility of our design through testing with
both dancers and professional athletes.

Categories and Subject Descriptors
B.4.1 [Input/Output and Data Communications]: Data
Communication Devices. Transmitters, Receivers, Processors.

C.3 [Special-Purpose and Application-Based Systems]:  Real-
time and Embedded Systems.

H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces.  Synchronous interaction.

J.5 [Arts and Humanities]:  Performing arts.

J.3 [Life and Medical Sciences]: Health.

General Terms
Algorithms, Measurement, Performance, Design, Theory.

Keywords
Wearable sensors, wireless, interactive media, dance,
biomechanics, biomotion, real-time, high-performance, inertial
measurement unit, synchronous motion analysis.

1. INTRODUCTION
The initial motivation for developing a high performance
sensor platform was interactive media. Specifically, our intent
was to explore the possibility of generating musical content
derived from the collective movement of multiple dancers in
real-time. Apart from the merit of artistic innovation, sensing
dance poses a significant technical challenge, in that there is a
need to capture movement across an unrestricted space, to
account for the many degrees of freedom of the human body, to
cope with strenuous physical activity without hindering
movement, to use sampling rates fast enough to measure rapid
motion, and to provide resolution high enough to capture the
subtlety of this motion. In addition to these already rigorous
constraints, the goal here was to collect, analyze, and transform
sensor data into musical parameters in real-time, making
continuous transmission at very high data rates a necessity.
Therefore, the most critical concern was pushing the limits of
available bandwidth, followed by maintaining a compact form
factor and reasonable battery life.

Of particular value is the fact that this priority structure differs
substantially from that of more common sensor network
applications. Typically, for these applications, functionality
should be pared down to create the most inexpensive and
power-minimal design possible. Much slower phenomena or
transient events are measured over longer time periods, data i s
reduced within the network, and information trickles back
slowly as a function of the power limitations and deployment
conditions. Since throughput is not often the focus of wireless
sensor technology, many recent sensor systems for dance lack
the ability to scale to multiple users in a satisfying way. This
point will be elaborated below, and is discussed in more detail
in [2,3]. Further, any system meeting the challenges of dance i s
directly applicable to other high performance, immediate
feedback applications where the typical sensor network design
goals become a limitation. Possible examples include
augmenting musical ensembles, adding live media content to
team sports broadcasts, professional athletic training, martial
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arts, interactive personal fitness monitoring, or physical
therapy.

The system described in this paper addresses the goals of
improved performance and scalability associated with such
applications. Results have been obtained with a dance
ensemble, demonstrating simultaneous data collection and
fusion in real-time from as many as six dancers wearing four
sensors each. In addition, work has been accomplished in the
process of extracting features relevant to the collaborative
movements of dancers, and mapping these features to musical
parameters with low latency. Testing has also been carried out
for professional athletic training applications, in which some
latency was traded for much higher sample rates and more
points of measurement on a single user. The results of this
study suggest that high-speed wireless inertial sensors may be
used to detect significant information missed by standard
video motion capture techniques.

1.1 Sensor Strategies for Dance
Dance is an inherently flexible art form, in that it often
involves the addition of other creative elements, including
music, video, lighting, or narrative. Naturally, there is a long
history in the use of technology to automate or enhance the
confluence of these elements [3]. However, as suggested above,
challenges still exist in the methods used to sense movement
and in the sheer amount of data generated.

As evident by the system discussed here, one general strategy
for designing dance interfaces involves placing sensors
directly on the body, with a wireless communication link to
transmit data to a central computer. Several interfaces of this
sort have been developed to capture dance gestures over the
last few decades. A number of the earliest of these placed
specific emphasis on sensor devices built into shoes, such as
the Taptronics system in the 1980’s [18], or the Expressive
Footwear shoes developed at the MIT Media Laboratory in the
1990’s [16]. Unfortunately, shoe-based systems cannot
measure upper body or arm motion, and have typically been
designed with one dancer in mind. Because of bandwidth
constraints, Expressive Footwear was never scaled beyond one
pair of shoes, for example.

Attempts to extend wearable dance sensors to other locations
on the body have usually started with bendable sensors
spanning primary joints, such as the elbows or knees.
Architectures of this sort have been introduced at DIEM [19],
and by Mark Coniglio of Trokia Ranch [9]. Although systems
like these have become wireless, they typically employ a
single radio in a central pack, so the various sensors need to be
tethered across the body to the wireless unit. This type of
design can be very restrictive for a dancer, and the bulky
infrastructure tends to limit reliability and scalability in a
performance setting.

Another general strategy for sensing dance minimizes or
eliminates body-worn hardware, by exploiting computer
vision to interpret images received by a camera system
monitoring the performance. This technique is now well
established, and the prevalence of optical tracking methods
has even prompted some artists to develop their own video
analysis tools [10,21]. Real-time video analysis is processor
intensive, and although the underlying technology and
algorithms are steadily improving, computer vision is further
limited by constraints on lighting and choreography.
Robustness to occlusion and background noise remains

problematic, especially with multiple subjects to track. As
compared to inertial sensors, sample rates are severely limited
in all but the most expensive video systems. Hence, obtaining
relevant features reliably from multiple dancers in real-time at
the rates desired here is difficult.

1.2 High-Performance Wireless Platforms
Many other compact wireless sensor clusters exist, developed
both within our own research group [6] and at other institutes.
However, very few, if any systems have combined low power
and small size with the number of sensor channels and high
data rates needed for real-time multipoint human motion
tracking [2,3].

Recently, Flety and collaborators at IRCAM [11] have built
wireless sensor networks that use the WiFi 802.11 standard,
and have used their WiSeBox system in a dance setting with
multiple performers. Although WiFi provides very high data
rates, it tends to be much too power hungry for efficient
continuous operation with a small battery. Consequently, the
WiSeBox architecture is based on a bulky central radio and
processing unit, and the sensors themselves have to be wired
across the body.

Other new systems favor sensor nodes using Bluetooth for
achieving high data rates and ease of connectivity with
consumer electronic devices. Some of these use inertial
sensors to measure human motion, and have been designed
with goals very similar to the ones outlined here [4,13].
Unfortunately, Bluetooth also has relatively high power
requirements, and the size of the network is limited to only
seven slave nodes per master. This means that Bluetooth
places limitations on the scalability of a system for dance. A
Bluetooth system with completely encapsulated sensor nodes
and high data rates has been proposed in [14], including
applications cited for dance and athletic motion analysis.
However, to expand this system to multiple users, each person
would have to carry a Bluetooth master device with a higher
speed uplink. Unfortunately, the equivalent of the heavy
central radio pack still exists in this case. The solution
proposed in this paper is to dispense with the convenience of
Bluetooth or WiFi in favor of a custom protocol using a
configurable, high data rate, low-power radio. This allows for
fully encapsulated nodes with increased scalability.

1.3 Collaborative Interfaces
One advantage to deploying enough sensing power to track
multiple people simultaneously is an opportunity to study
collaborative motion, and to design systems capable of
responding to relationships between people’s activity. This
ability is especially desirable, as collaboration is a
fundamental basis of human activity. A number of relevant
sensor platforms and data analysis strategies geared towards
this are discussed in [3]. Despite these initiatives, it seems that
only a few attempts have been made to study collaborative
performance interfaces from the perspective of detailed
collective motion analysis. In the interest of exploring this
area more thoroughly, the analysis performed with our system
so far has mainly focused on features relevant to group
movement.

2. HARDWARE
As suggested above, the system was envisioned as a network
of compact sensor devices, each with its own wireless data
link, to be worn on the wrists and ankles of a group of users.



For dance, sensor placement on the limbs was chosen as a
compromise between the ability to describe full body
movements and the number of devices required. Since the
nodes are fully encapsulated units, the system can easily be
generalized and reconfigured to suit other applications. Each
sensor node includes a full IMU, measuring acceleration and
rotational velocity in all three axes, with the help of small
micro-electromechanical (MEMS) sensors. It was also
considered beneficial to include options for extended sensing
modalities where resources were available. This led to the
inclusion of a capacitive node-to-node proximity sensing
system and a flexible expansion port.

Figure 1. Sensor node architecture.

The basic architecture is shown in Figure 1. Based on the
frequency content of active human motion and the peak
resolution of the MEMS devices, all channels are sampled at
100Hz and with 12 bits. In order to ensure low latency data
collection and synchronous sampling across the network, we
use a star topology in which a central base station arbitrates all
timing and data collection. The base station forwards the data
it receives via USB to a host computer, where feature extraction
and analysis takes place. Figure 2 shows the assembled sensor
node board, which measures 4x4x2cm. Including the external
battery pack, the finished product weighs only 45 grams.

Figure 2. Assembled node board and battery pack.

2.1 Inertial Measurement Unit
The IMU is the functional basis of the system, and hence it is a
core component of the hardware design. Accelerometers and
gyroscopes of the MEMS variety provide the best precision for
compact wireless systems. The choice of specific sensors was

heavily influenced by previous work leading up to the current
design [7,15].

For maximal range and small size, the Analog Devices iMEMS
ADXRS300 was the best rate gyroscope available at the time
components were evaluated. However, its nominal range of
±300deg/sec is still low for rapid human motion. Luckily, its
sensitivity can be reduced to obtain a range of up to
±1200deg/sec by setting an external resistor [3]. For athletic
applications, this measurement range must be extended even
further, as explained in Section 4.2.1 below. Although dual-
axis gyroscopes have become available recently, the ADXR300
is a single axis device, which necessitates orthogonal
mounting of three components to obtain rotational velocity
sensing in all three axes. This was accomplished using an
edge-mounted daughtercard design, as evident in Figure 2.

Three-axis accelerometers were also new to the market during
the early design stages. As sensor daughtercards had already
been dictated by the gyroscope choice, we focused on two-axis
accelerometers, using an orthogonally mounted pair to obtain
the full three axes of acceleration sensing. In order to ensure
the full range of measurement for human motion, the ±10g
Analog Devices iMEMS ADXL210E was selected.

A number of improvements are already clear with regard to the
inertial sensor module. Experimentation has suggested that
most dance movement occurs within a ±5g range, allowing for
more sensitive accelerometers than the ADXL210E. The new
three-axis, ±3g ADXL330 might be adequate, and would not
only provide a savings in board area and component count,
but would reduce cost and power consumption as well. Adding
new multi-axis gyros will be a dramatic improvement,
eventually eliminating the need for bulky daughtercards
entirely. This progression only highlights the fact that inertial
measurement modules are steadily becoming smaller and
cheaper.

2.2 Capacitive Proximity Sensing
Despite the ability of MEMS accelerometers and gyroscopes to
perform well in detailed gesture tracking applications, their
signals are still not clean enough to provide positional
tracking in space. Because the computation of position from
velocity or acceleration requires a double integration, noise
and bias rapidly accumulate in the result. To recover from this
drift, navigational systems need to be calibrated periodically
with an outside reference. In the case of small and relatively
noisy MEMS sensors, this recalibration would have to occur
on the order of every 5 seconds [7]. Even then, finding a
reliable calibration reference is problematic. Since the primary
focus here is on relative qualities of movement, energy-based
features, and subjective comparisons between gestures, it is
possible to leave the issues of calibration and elimination of
IMU drift for future work. However, in some cases it would be
satisfying to make a simple statement about the location of
one sensor node with respect to another. To help extract this
type of information, a capacitive sensor system was added to
the design, supporting rough measurements of distance
between pairs of nodes in the network.

Capacitive sensing comes in a variety of forms, but it usually
implies a measurement of capacitance between two electrodes
in order to determine electrode spacing [5]. For human
interfaces, the electrodes may be irregular conductors worn on
the body, or the body itself may act as a ground electrode, and



capacitive coupling occurs through the air. One method of
measuring capacitance in this situation is to transmit a high
amplitude sinusoidal signal from one electrode, while
measuring the received amplitude on the other. For the
appropriate transmit frequency range, 50-100kHz in air, the
capacitive coupling between electrodes acts as a variable
cutoff highpass filter. Therefore, as the capacitance varies, so
does the amplitude of the received signal. This configuration
is similar to transmit mode sensing as discussed in [20].
Because the variations in capacitance are small and sensitive
to environmental factors, synchronous demodulation i s
typically used to determine the amplitude of the received
sinusoid while rejecting uncorrelated noise.

In this case, the transmitter and receiver electrodes are attached
to isolated wireless sensor nodes. Because of this, there is no
direct electrical path between the two devices, which makes the
situation more challenging. To provide a common reference,
the devices worn by the same user can be grounded through
the body, a technique that has been documented to improve
performance in [17]. Another difficulty is the lack of phase
coherence between the receiver and transmitter, which prevents
synchronous demodulation from being performed. However,
the amplitude of the received signal can still be estimated by
sampling in quadrature, or at exactly four times the transmit
frequency, as established in [12] and further discussed in
[3,20].

Our design uses an amplifier and tuned LC oscillator driven by
a microcontroller output pin to generate the transmit signal at
90.1kHz. Peak-to-peak amplitudes of up to 40V can be
achieved with this technique, with very little power drain.
When receiving, the node is able to use the same LC oscillator
as a bandpass amplifier. Since only one capacitive
measurement can be made at a time, nodes are designed to
continually trade roles as transmitters and receivers. A detailed
discussion of the implementation is provided in [3].

Figure 3. Typical capacitive sensor response with different
electrode configurations.

This capacitive sensor design was first presented in [1], but
since then there have been significant improvements in range
and reliability. Figure 3 shows the performance of the system
with different electrode configurations, and with the body
grounded and ungrounded. The faceplate electrode indicated
in the chart was a small piece of copper foil spanning the area
of the node circuit board. The bracelet electrode was a wide
copper band encircling the wrist, used to simulate the effect of
building a conductive electrode into the strap affixing the
sensor device to the body. As expected, provided that two
nodes share a ground through the body, the bracelet electrode
provides a significantly better range than the smaller faceplate
electrode, since capacitance is dependent on electrode area.

However, eliminating the shared ground cuts this range nearly
in half. In fact, the results indicate that a small electrode
employing a shared ground is preferable to a large electrode
with no shared ground. Assuming a favorable electrode design,
the current capacitive sensor system can achieve a range of
about 50cm. This covers gestures occurring across most of the
range of a typical arm span, and the symmetrical bracelet
design is able to eliminate the directionality issues of infrared
or ultrasonic ranging systems.

2.3 Radio
The wireless radio on each sensor node is the most critical
component of the hardware design next to the inertial sensor
module. Our goal was to achieve the highest data rate possible
with a low-power radio, in order to enable higher data
throughput than other wireless tracking systems. To establish
the bare minimum requirements, consider five dancers wearing
4 sensor nodes each. With 100Hz sampling rates and 12 bit
samples as stipulated above, this produces 144kbps of inertial
data alone:

6sensors/node × 12bits/sensor × 20nodes × 100Hz = 144kbps.

Given a rough estimate of 40% channel utilization due to
overhead and protocol inefficiency, as well as the addition of
four additional sensor signals possibly generated by the
capacitive sensing system, the actual bulk data rate
requirements of the communications channel can be much
higher:

10sens/node ×12bits/sens ×20nodes ×100Hz /40% = 600kbps.

During the early design stages, the Nordic nRF2401A was the
fastest option. This is a low-power 2.4GHz radio providing
data rates of up to 1Mbps. The radio module was designed on a
small daughtercard, physically separate from the main node
board, and equipped with an SPI interface for communication
with the microcontroller. A daughtercard module was favored
for signal integrity and interchangeability. The sensitive
nature of RF circuitry is such that it is preferable to isolate the
radio from the rest of the system to minimize interference. As
far as interchangeability is concerned, the nRF2401A has
already been superseded by the potentially more flexible
1Mbps Chipcon CC2400 and the new 2Mbps Nordic
nRF24L01 during the course of the development of this
project. Judging by this trend, capabilities of low-power
radios will continue to improve rapidly for the foreseeable
future, mirroring the improvement of inertial sensing devices.
By encapsulating the radio module on a replaceable
daughtercard, the sensor node can adapt easily to higher
network speeds as possibilities grow.

2.4 Microcontroller
Each sensor node is equipped with a microcontroller (MCU)
which functions as a local control center for collecting and
processing data, arbitrating sensor behavior, maintaining
communication with the RF module, and timing events.
Although there are data radios with integrated MCUs,
including the 1Mbps Nordic nRF24E1, we favored a dedicated
MCU for flexibility, processing power, and increased I/O. In
the current design, the Texas Instruments MSP430F149 was
used. This is a low-power, 8 MIPS, 16-bit device with an 8-
channel, 12-bit ADC, ideal for small sensor systems. The MCU
provides some spare resources, including a free digital input
for interfacing with a Polar heart rate monitor, a free SPI



interface for connecting with other digital devices, and a free
analog input with associated signal conditioning circuitry for
handling an additional resistive sensor, such as a pressure
sensor, bend sensor, or light sensor. All of these signal lines
are broken out to the expansion port shown in Figure 1, which
also acts as the programming interface.

2.5 Power
Power is supplied by a 7.4V 145mAh lithium polymer battery
pack. This chemistry was chosen because it is lightweight,
compact, and rechargeable. Unfortunately, continuous
operation with three gyroscopes and frequent radio usage
prevents the design from meeting traditional low-power
requirements. During normal operation, each node can
consume over 200mW. Therefore, the lithium battery pack
allows for about 5 hours of operation, which was considered
adequate for a dance performance or motion capture session.
The battery pack was decoupled from the sensor board in order
to distribute the mass of the device, thereby making it more
comfortable to wear. Also, access to the battery makes it easy
to swap out for charging and allows for the use of other battery
configurations in the future.

3. COMMUNICATIONS
Data generated by the sensor nodes must be transmitted to the
central computer as quickly as possible to allow real-time
processing to occur. In the case of music generation, delays of
greater than 100ms are not only clearly audible, but can be
disruptive to performers. Because of this, transmission
latencies of greater than 30ms begin to leave insufficient time
for processing. Additionally, the samples across all of the
sensors in the network should be time synchronized and
collected at a stable rate. As suggested previously, the best
arrangement in this situation is a star topology, where a base
station is given complete control over all communication and
timing on the network.

In the custom protocol proposed here, which has been largely
derived from an earlier design [15], this control is based on
broadcast messages sent from the base station to all of the
nodes at the sample rate of 100Hz. This imposes very strict
synchronization, and allows the nodes to share the
communications channel effectively with a simple time
division multiple access (TDMA) scheme. At the beginning of
the cycle, each node listens for the broadcast signal. Upon
receiving the signal, the sensors are sampled, and data i s
transmitted back to the base station after a preprogrammed
time interval, as determined by each node’s hard-coded ID
number. Once a transmission has been sent, each node knows
roughly when to begin listening again in preparation for the
next broadcast (see Figure 4). During the time when the radio
is not transmitting or receiving, it is put to sleep to conserve
power. At the base station, the data received on each cycle i s
forwarded to a host computer via a USB connection. Besides
low latency, the advantage of this protocol is that samples
across the entire network will be taken at roughly the same
time and precisely at the sample rate determined by the base
station, with high tolerance to clock skew between nodes.

Data is sent upstream from each node to the base station in 16
byte packets for each sample, which include a header, 6 inertial
sensor values at 12 bits each, and 3 capacitive sensor values at
16 bits each. During transmission, the radio also adds an 8 bit
preamble, 40 bit address, and 16 bit cyclic redundancy check
(CRC) code, for a total packet length of 24 bytes or 192 bits.

The transmission also requires a setup time of roughly 195µs

in addition to the 192µs air-time required to send 192 bits at
the rate of 1Mbps. Therefore, the effective data throughput for
a single transmission with this configuration is only 330kbps,
or a 33% channel utilization:

16 bytes / (195µs + 192µs) = 128bits/387µs = 330kbps.

In practice, the setup times for transmission on different nodes
can be overlapped to pack received messages at the base
station as tightly as possible. This helps recover some loss,
but other sources of inefficiency are present, including the
time within each broadcast cycle dedicated to transmitting a
broadcast message, collecting new samples on the nodes, and
processing the received samples on the base station. The
system also lacks efficiency due to the fact that it must handle
many small packets, each with overhead, rather than a smaller
number of large packets. Based on empirical measurement, a
maximum of 25 nodes are able to share the channel
simultaneously while sampling 100Hz, given the current
protocol and packet configuration. Hence, the actual data
throughput of the sensor network is found to be:

25nodes x 128 bits/node x 100Hz = 320kbps.

Although the loss in data rate appears drastic compared to the
bulk rate of 1Mbps, this efficiency is representative of what
could be achieved with standard protocols, and our custom
scheme has the advantage of low latency, with a maximum of
one sample delay to the base station and typically a two
sample delay to the host computer. More details on the
communications structure can be found in [3].

Figure 4. Illustration of the TDMA communications cycle.

The success of this system in the field depends on the RF
environment. In general, signals were received very reliably
over a range of about 50 feet indoors. However, the existence
of nearby 2.4GHz activity, as well as shielding from the body,
can disrupt communication within this range, causing received
packet rates to drop to 70% in some cases. One problem is that
the protocol is highly dependent on broadcast packets being
received by every node at every sample interval. In fact, clock
skew between nodes is small enough that the network can
continue to return data within the TDMA slots for at least two
samples per resynchronization. Making this simple
optimization in the future will greatly reduce packet loss in
cluttered RF environments. In this case, dance performance
spaces tend to limit the problem of interference, as the
environment on stage can be somewhat controlled.  



4. ANALYSIS AND RESULTS

4.1 Feature Extraction
Early experimentation mainly focused on establishing a set of
low-latency features that could be generated from our sensor
data with meaningful interpretations in a dance context. In
particular, we wished to highlight the unique ability of our
system to analyze relationships between the movements of
multiple people. This research was initially presented in [1,2].
The two basic concepts explored in terms of collective motion
analysis are measuring time separation and spatial similarities
between movements and monitoring and comparing activity
levels. In addition, the possibility of exploiting the structure
of a group to mediate feature extraction has been introduced.

4.1.1 Temporal and Spatial Separation
In the context of a dance ensemble, time and spatial
correlations can be used to determine which dancers are
moving together, which dancers are leading versus following,
and perhaps which are responding to one another with
complementary movements. The frequency of repetitive
motion can also potentially be detected, leading to an estimate
of mean tempo. Similarly, in situations outside of dance, the
ability to document how the movement of one person affects
that of another can be valuable in determining the nature of the
collaboration taking place.

Cross-correlation is the most direct way of obtaining this
information, as the location of a cross-correlation peak
denotes the time delay between similar events, and the height
of the peak denotes the degree of similarity. However, since the
accelerometer signals tend to have a bias offset due to gravity,
cross-covariance is the preferred measurement, as it is the
equivalent of cross-correlation with the mean of the input
signals removed. On streaming data, cross-covariance
calculations can be performed periodically on short windows
of data. Window size is chosen to make a tradeoff between
latency and the maximum time separation that can be
expressed. For instance, a window of length N samples handles
time separations of ±N, but also requires N samples before the
calculation begins. Therefore, cross-covariance can never be
extracted in real-time, but processing on windows less than a
second long might still be useful for driving interactive
content.

To test the effectiveness of a cross-covariance measure, sensors
were given to three dancers participating in a ballet lesson;
each wore one on the right ankle. The class then performed an
exercise involving a repeated sequence of leg swings executed
in unison, to music. Although they were roughly in time with
the music, the dancers were not necessarily looking at each
other or at an instructor, creating a small but clearly visible
delay in their motions, as documented on video.

Figure 5 shows the result of windowed cross-covariance
analysis on the corresponding data segment, computed using a
window size of 1 second, step size of 0.25 seconds, and
averaged across sensor axes. That is to say, at each interval of
0.25 seconds, data from the past second was considered, the
cross-covariance vector was computed individually for each
inertial sensor signal, and finally the individual vectors were
averaged to produce the final result. The segment from about
35 to 65 seconds corresponds to the synchronized sequence of
swings made with the right leg. Note that the area of peak
cross-covariance, shown in white, tends to waver around the

baseline as time progresses. This is consistent with the dancers
slowly leading and lagging with respect to one another by
small amounts. The histograms in Figure 6 roughly show the
extent of the peak drift for each of the three plots in Figure 5. It
is clear from the relative stability of middle plot that Dancer A
and Dancer C were closely synchronized for the duration of the
exercise. However, the other two pairings were not as stable.
These fluctuations reflect accurately what is visible in the
video. Interestingly, it turns out that Dancers A and C were
facing each other during the exercise, while Dancer B had her
back turned to the others.

Figure 5. Average windowed cross-covariance between pairs
of dancers, for leg swings performed in unison.

Figure 6.  Histograms showing XCOV peak drift in each of
the three plots of Figure 5, top to bottom.

Another observation regarding Figure 5 is the fact that in some
areas, the covariance peaks are not as well defined as others.
This is especially true in the bottom plot, relating dancers B
and C. Smaller peak values indicate less similarity in the
motions being performed, and this data seems to agree with
certain gestural differences visible in the video footage. Thus,
although cross-covariance is not strictly a real-time feature, i t
is still clearly valuable for describing group relationships,
both temporally and gesturally.

4.1.2 Quantifying Activity
In addition to extracting correlations between the activities of
a group, it is important to obtain information about the
properties of the activities being observed. These properties
might include variations in the overall activity level of an
individual or group at different time scales, principal axes of
movement, or other features extracted during an interval of
high activity. Activity related measures can also be calculated
with lower latency than cross-covariance.

Increased physical activity, as qualified by faster movements
and more frequent directional shifts, is related to the energy
present in the inertial sensor signals. In turn, the average
energy over a segment of data is reflected in the variance of the



segment. Therefore, a common approach to activity
measurement on an inertial data stream involves computing
windowed variance. The associated computations require very
little processing power, and although they also rely on
capturing a complete window of data, these segments can be
much shorter than what was needed for cross-covariance.
Hence, the latency associated with windowed variance is much
lower. Variance can be used here with various combinations of
sensors, and can be processed in different ways, depending on
the desired result. For instance, if the separation between
gestures is long enough, the variance spikes created at the
beginning and end of a movement can be used to delineate
them. In other cases, it might be useful to use a median filter to
obtain a slowly varying envelope on the running variance for
certain sensors, in order to determine broader trends in activity
level.

As an example of the latter, data was collected from the right
wrist and ankle of a ballet student performing a sequence of
motions in which slow kicks with the right foot transitioned
into fast, tense kicks. The full sequence was framed with a
stylistic raising and lowering of the right arm at the beginning
and end, respectively. Figure 7 shows a portion of the raw data
from this segment along with four different activity envelopes
obtained by filtering the windowed variance of both upper and
lower body movement. Accelerometer activity here denotes the
average variance envelope across the accelerometer axes, while
rotational activity denotes the average across the gyro axes.
One can clearly see a marked increase in activity as leg motion
transitions to faster kicking. The role of the arm movement i s
apparent in the activity envelope as well.

Figure 7. Selected data and resulting activity envelopes as
dancer transitions from slow kicks to rapid, tense kicks.

Sequence of leg motions is framed by stylistic arm motion.

If one wishes to identify a particular type of activity, it may be
more important to compare motion along each sensor axis than
comparing rotational versus translational motion, since a
specific movement may be characterized by high variance in
some directions, but not in others. Previous work in [2,3]
discusses how variance envelopes from multiple sensor axes
on one individual could be combined to form an activity
profile for distinguishing between certain types of movement.
This type of analysis can be extended to an entire ensemble,
simply by averaging the appropriate activity envelopes across
the group to create a global activity feature. Global activity
can be useful for determining predominate axes of collective
motion across the group.

4.1.3 Feature Reduction from Group Structure
In order to limit the amount of information that has to be
processed and interpreted to generate meaningful feedback, it
is helpful to reduce the number of high-level features under
consideration at any given time. In any situation with group
cooperation, movement develops a structure that may create
very natural opportunities to make this reduction.

In the case of dance, one possibility is the use of lower level
features such as activity profiles to cluster groups of dancers.
Ideally, these clusters would reflect real groupings forming on
stage as a result of the choreography. Once the clusters have
been made, heavier analytical techniques can be performed on
these groups as units, rather than on each dancer individually.

Another option is to consider data selectively based on the
statistical properties of the group. This might involve giving
special analytical attention to individuals whose movements
deviate significantly from the norm, or it might involve
focusing only the net characteristics of the ensemble, giving
weight to the majority. These structural interpretations can
help narrow down the space for mapping and interpretation.

4.2 Biomotion Capture for Athletics
Although interactive dance provided the impetus for this
sensor system, its possible uses extend to any area in which
high-quality human motion analysis can be applied,
especially those requiring low latency feedback, high sample
rates, or many points of measurement. Athletic training comes
to mind as one of the most promising areas for further
development. In a pilot study detailed in [8], we were able to
test our system with a minor league baseball pitcher, in
collaboration with the Massachusetts General Hospital Sports
Medicine Department and the Boston Red Sox. The motivation
for focusing on pitchers stems from a recent increase in
injuries associated with the shoulder and elbow of the
pitching arm. These joint injuries are typically the result of
wear building up over time, but the risk of injury clearly
escalates if a pitch is made with poor body mechanics or after
passing the threshold of muscle fatigue [8]. A definitive risk
assessment is difficult to make, in part because the mechanics
of the arm during a baseball pitch are not fully understood.
Especially for professional players, who routinely throw
fastballs with release speeds approaching 100mph, the critical
portion of the arm motion occurring immediately before ball
release is simply too fast to be captured in detail with the
standard video tracking techniques. In particular, health
practitioners are looking for more accurate measurements of
peak angular velocities at the shoulder and elbow, as well as
peak accelerations at the wrist.

4.2.1 Adapting the Design
Based on rough estimates available in the biomechanics
literature, internal rotation of the shoulder was expected to
peak at values of up to 10,000deg/sec, elbow extension up to
4,500deg/sec, and wrist acceleration above 80g [8]. In order to
measure these extreme ranges, modification of the IMU was
required. Because of varying requirements at different
locations on the body, high-range and mid-range IMUs were
designed to accompany the original low-range design. The mid
range device incorporated three ADXL78 ±70g single-axis
accelerometers, while the high-range device used a similar
arrangement of ADXL193 accelerometers, providing
measurement to ±120g. Both modified IMUs were intended to
measure rotational velocities up to 10,000deg/sec, which is



well above the nominal rating of any MEMS gyroscope.
Luckily, adapting the ADXRS300 to such an enormous range
is only a matter of reducing its sensitivity, by overriding some
of its internal power management, according to advice from
Analog Devices [3]. Using this technique, we were able to
increase the range to over 11,000deg/sec.

In addition to high range measurement, high sampling rates
were also required to capture motion in sufficient detail.
During a baseball pitch, the period of high acceleration over
which extreme measurements are registered typically only
lasts 20-40ms. Using the standard 100Hz sampling protocol,
this equates to only 2-4 data points. State of the art video
motion capture systems can double this number of data
points; for instance, the cameras used by the American Sports
Medicine Institute sample at 240 frames/sec. However, inertial
sensors are capable of responding at much higher rates. In
order to highlight this ability, we adapted our system to
sample at 1kHz, thereby generating data with 4 times more
temporal resolution than leading video motion capture
systems. This improvement is made at the expense of real-time
operation, as the radio does not have the bandwidth required
to stream data at this rate from multiple nodes. Instead, data i s
logged locally in on-chip flash memory and is returned to the
base station when a pitch is complete.

4.2.2 Preliminary Results
The study was conducted with a pitcher wearing six sensor
nodes placed at the most crucial locations on the body. Table 1
describes the sensor placement and distribution of
measurement capabilities. At the upper arm and wrist, pairs of
low and high range sensors were used to provide additional
resolution for fine movements at low ranges. A video motion
capture system was also being tested concurrently with our
wireless sensors. Although there has not been a formal attempt
to compare the output of the two systems, we hope to validate
our system against motion capture data in future work. A
limited number of measurements were taken in this study, but
compelling results were provided by the high-range
accelerometers.

Table 1. Sensor placements and approximate ranges.

Figures 8 and 9 show an example of the accelerometer signals
from each axis as well as estimated magnitudes recorded from
the hand and upper arm during one of the pitches. The results
indicate an area of significant movement lasting roughly
400ms, with a rapid peak acceleration phase lasting under
30ms, as expected. The acceleration values given in the plots
are approximate, as the sensors were never calibrated.
Nevertheless, a very sharp increase in magnitude of
acceleration was recorded on all nodes, with approximated
peak values in accordance with the video tracking results and
predictions in the literature.

At the hand, the predominant axis of acceleration is the y-axis
as shown by the solid line, which peaks above 110g (Figure 8).
This represents the acceleration directed down the arm towards
the elbow, and hence is the major component of centripetal

acceleration as the arm rotates towards ball release. The smaller
accelerations on the other two axes are transverse movements,
as indicated by an acceleration (positive) peak followed by a
deceleration (negative) peak. This most likely corresponds to
the sudden burst in tangential velocity immediately before
ball release. The magnitude plot indicates that at its peak, the
hand may experience up to 120g of net acceleration, although
this impressive peak is only sustained for several
milliseconds. Data recorded during other trials exhibits a
similar behavior and peak acceleration value, although more
extensive testing is called for before definitive claims can be
made.

Figure 8. Acceleration phase of a baseball pitch as measured
at the hand.

Figure 9. Acceleration phase of a baseball pitch as measured
at the upper arm.

In addition to peak accelerations, it was also important to try
to obtain a preliminary estimate as to the peak angular
velocity of internal rotation of the shoulder. This process
generates most of the power associated with a baseball pitch.
Consequently, the shoulder is the joint that takes the most
wear from repeated pitching. Unfortunately, the gyroscopes
that would have measured this rotational speed directly
malfunctioned during the study. Still, it was possible to
obtain a rough estimate by assuming that angular velocity of
the shoulder is related to centripetal accelerations of the arm.
At the upper arm, internal rotation of the shoulder shows up as
centripetal acceleration directed inwards towards the bone.
This corresponds to a negative acceleration on the z-axis of the
upper arm sensor, which is clearly apparent in Figure 9. The
centripetal acceleration appears to reach approximately 66g.



Given a biceps radius of 6cm, this results in a peak angular
velocity of 104 rad/sec, or roughly 6,000 deg/sec. This i s
lower than the expected peak value of 10,000 deg/sec, but it i s
a very vague estimate that may have been affected by the lack
of calibration of the accelerometers.

Although the accuracy of our observations is unknown, they
seem to agree with predictions of extremely high accelerations
and angular velocities that peak for only tens of milliseconds.
The data recorded using our system shows that these peaks
have definite structure, which cannot be captured reliably at
current video tracking rates. With calibration and additional
testing, a wireless inertial sensor system could be an important
supplement for video motion capture in a sports biomotion
context. Once the relationship between pitching parameters
and inertial features is more thoroughly studied, it may be
possible for an inertial system to provide useful information
without optically tracked reference points, providing the
potential for bringing biomechanical analysis out of the
laboratory and onto to the playing field.

4.3 Generating Interactive Content
As of yet, the sensors have not been used in a live interactive
media setting where dancers can actually hear the audio output
they create. However, all of the necessary components are in
place, and the full system has been tested successfully in an
environment that allows sensor data to be realized as sound in
a simulation of real-time operation. To accomplish this, five
dancers were monitored, each wearing sensors on both wrists
and ankles, for total of 20 sensor nodes. Data was collected
during a rehearsal over several repetitions of a short dance
piece. Then, the recorded data was analyzed offline to
determine relevant features and mapping strategies for turning
these features into interactive sound. Finally, the recorded
performances could be recreated by playing the data back into
the feature extraction engine, just as if it had arrived in real-
time. All data processing, feature extraction, and mapping
algorithms were run in Max/MSP, with sound synthesis in
Reason.

A critical part of this test application was to design a low-
latency mapping to musical parameters. The goal was not to
create a coherent performance piece, but to verify the
capabilities of the system, to show a clearly audible
relationship between movement and responsive sounds, and to
demonstrate how the features discussed previously could be
interpreted in a real dance setting. The mapping process is as
shown in Figure 10. The feature extraction algorithms
employed are meant to cover most of the strategies for group
analysis, including temporal separation, comparison of
activity profiles, and average group parameters. For simplicity,
only the motion data provided by the inertial sensors was
considered. During the mapping process, these time varying
features are transformed into control parameters for sound
generation using four basic synthesized instruments. For this
design, the mapping from features to sound parameters is very
simple and direct, so that the features being measured are
audible.

The most prominent components of the output were guitar and
flute sounds triggered by “solo” movement, defined as
activity for one dancer that was not reflected in the rest of the
ensemble, and violin notes that responded to increasingly
synchronized and correlated activity across the ensemble. In
the case of the violin notes, as the degree of correlation
increases across the ensemble, the density of the triggered

notes increases as well. At the same time, the degree of
synchronicity across the ensemble, as measured by average lag
times between similar movements, controls the pitch of the
notes. These parameters combine to create very frenetic, high-
pitched clouds of violin notes whenever the ensemble locks
into simultaneous synchronized movement.

Figure 10. Basic strategy to test real-time mapping from
sensor data to sound.

Figure 11. Average lag features between dancers, used to
determine violin pitch and note triggers.

Figure 11 shows the progression of the lag feature used to
control violin notes during a particularly clear segment of
dance. Dark points correspond to higher pitches, while
dispersion from the center axis roughly corresponds to note
density. The two plots are indicative of the fact that half of the
dancers controlled a violin with a high note range while the
other half controlled a lower note range, to prevent clutter. In
this segment, the dancers alternate between swinging their
arms energetically and running in place. During the arm
motion, all of the dancers are very tightly synchronized.
However, when running in place the footsteps were more
difficult to synchronize, hence there is dispersion along the
lag axis. A similar dispersion is heard in the cloud of violin
notes at these instances.

Qualitatively, much of the audio content rendered in this
manner matched up with dance movements in the recorded
video segments in a satisfying way. Some noticeable latency
was inherent in the features being used, for example, over a
second delay for cross-covariance. However, the mechanics of



the real-time simulation held up well, in the sense that data
arriving at realistic rates was translated from features into
sound successfully on one processor. Latency will surely be
worse in a live situation, and it remains to be seen how dancers
respond and adapt to this. With interactive feedback, the
ability to utilize low-latency features while still achieving a
satisfying output will improve.

5. CONCLUSIONS AND FUTURE WORK
In summary, this paper has presented the design of a system of
compact, wearable, wireless inertial sensing devices, as well as
their application in analyzing human motion and providing
real-time feedback. With dance performance applications in
mind, the design effort has been focused on building a
platform for improved scalability, speed, distributed
measurement, and interpretation of group interactions. The
novel achievement in this area is the ability to instrument
entire ensembles without sacrificing the measurement
resolution typically reserved for an individual. With this
requirement satisfied, the result is a high-performance system
equally applicable to any situation where human motion
analysis is coupled with the need for high data rates.

The results of the dance study show that it is possible to
collect and analyze data quickly enough to generate
meaningful feedback in response to dance with tolerable
latencies. At this stage, the data has mainly been interpreted at
a low level. More work is required to find features and
processing algorithms that reduce latency while improving the
meaningful quality of the output. The next step in this process
is to run the system in a live situation where dancers can hear
the musical feedback they generate. While playback
simulation was arranged to project true latency estimates, i t
does not replace the ability of dancers to respond, learn, and
offer suggestions for improvement.

Extending beyond dance applications, the system has also
been evaluated in a preliminary study measuring the arm
movement of professional baseball pitchers. With some
modifications, the sensors were able to measure the extremely
high accelerations involved with more temporal resolution
than a state of the art motion capture system. Statements as to
the accuracy of these measurements and their bearing on
traditional motion capture practices will require further study
and rigorous calibration.

As technology continues to improve, wireless inertial
measurement modules will certainly become smaller, faster,
cheaper, and more accurate. Thus, the strategies developed with
this platform will become more feasible and ultimately more
prevalent in high-performance motion tracking applications.
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