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monitor driver, car, and road (top). Driv-
ing course through city, highway, and
neighborhood roads (bottom).
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ABSTRACT

This paper focuses on the larger question of when to administer in-car just-in-time stress management
interventions. We look at the influence of driving-related stress to find the right time to provide
personalized and contextually-aware interventions. We address this challenge with a data driven
approach that takes into consideration driving-induced stress, driver (cognitive) availability, and
indicators of risky driving behavior such as lane departures and high steering reversal rates. We ran a
study with (N=16) commuters during morning and evening traffic while applying an in-situ experience
sampling. During 45 minutes of driving through various scenarios including city, highway, and
neighborhood roads we captured physiological measurements, video of participants and surroundings,
and CAN bus driving data. Initial review of the data shows that stress levels changed greatly between
2 and 9 (out of a 0-min to 10-max scale). We conclude with a discussion on how to prepare the data to
train supervised algorithms to find the right time to intervene stress while driving.
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*Stress is defined as a proxy for auto nomic
arousal.
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MOTIVATION

The commute has been proposed as a vital time for in-car stress™ management interventions [11],
because it provides, firstly, a physical platform for stress sensors (e.g., stress level detection via a
steering wheel [10]), and interventions (e.g., actuators embedded in the seat [1]); and secondly,
an increased user receptiveness during the (so far) idle commute time. The aim is to reduce stress
accumulated during the workday and mitigate driving-induced stress that could otherwise exacerbate
stress-related symptoms [6]. Various ideas for in-car stress interventions have been proposed such as
soothing temperatures and music, bio-feedback interfaces [5], and chatbots [8]; and first proof-of-
concepts have been validated, e.g., in-car body movements [9] and breathing interventions [1, 11].

The implementation of those concepts is not trivial due to the complex nature of the underlying
driving task. Studies show, for example, that an engagement into a secondary task (e.g., dialing on
the phone) can lead to poorer driving performance and increased accident risk due to distracted focus
[12]. A safe engagement requires therefore sufficient driver resources, e.g., cognitive load. Moreover,
stress management is complex: while low to moderate (acute) stress is a much-needed reaction to
acquire physiological resources for executing the driving activity; too much stress can lead to poorer
driving performance due to impaired cognitive abilities, situational awareness, and increased response
time [6].

We envision a context-aware, personalized system that can sense a driver’s state and driving condi-
tions in order to adaptively apply health enhancing interventions if deemed beneficial, comfortable,
and safe. The task is to develop robust driver state estimation algorithms that successfully operate in
on-road (noisy) driving environments. This requires a rich data set. Our contributions are therefore:
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(1) Methodological advancements by combining experience sampling method with observation
and in-situ sampling.

(2) Creation of a real world driving data set of commuters in commute traffic, including psycho-
physiological measurements, video, and CAN bus driving data. Data set will be made publicly
available.

(3) Discussion on how to prepare the data to train supervised algorithms to find the right time to
intervene stress while driving.

SYSTEM DESIGN

As the great majority of Americans commute by car alone [7], and driver behavior might change with
passengers on board [16], we sent participants as single passengers into morning (7.00 to 10.00 am) or
evening (3.30 to 8.00 pm) commute traffic.

Participants. We recruited (so far) a total of sixteen participants (N = 16, 7 females). Average
age was M = 38.3 years (SD = 11.4). To ensure a driving habituated cohort, we invited only frequent
commuters. Five participants reported to commute every day, whereas eleven commuted only a few
times per week.

Driving Course. We chose a 12.3 mile long driving course to include a variety of different driving
environments and contexts, namely campus, neighborhood, city, highway, and mountainous roads
(Figure 1). The course comprised nineteen left and fifteen right turns, twenty-three stops signs, and
twenty-four traffic lights. Participants needed in average M = 50 minutes (SD = 9) to finish the route.

Apparatus. As experimental vehicle we used an Infinity Q50. We equipped the car with seven
cameras (Figure 1): four cameras were placed to record the participant from front, top, and side views;
one camera recorded the street in front; and two cameras were placed on each frontal fender to record
the distance between tire and lane marking. We placed a voice-reactive microphone on the middle
console within participants visibility (Figure 3). The microphone was connected to a raspberry pi,
which in turn was linked to a cradle point for wireless access. The experimenter (E1) could operate
the pi via a secure remote access (RealVNCh - https://www.realvnc.com) from a computer inside the
research facility. Via a text to speech program, any text entry could be transferred from the laboratory
to the car. We used Mac OS system voice “Samantha”. The Pi was connected to the car’s speaker
system. Video streams of the participant and driving environment (Figure 1) were merged via a quad
multiviewer and displayed on a laptop inside the car’s trunk. Via a second screen sharing tunnel, the
quad view video stream was accessible for E1, allowing live monitoring of the participants on the road.

Procedure. E1 introduced the commuters to the conversational agent “Carla” (Figure 3), and
further explained that the study’s aim would be to produce a data set that would allow Carla
to learn about driver states. E1 instructed the participants to follow a provided GPS navigation
route, and to answer Carla’s questions throughout the drive (see section below). After the drive, a
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Figure 3: Voice-reactive microphone while
in speech detection mode.

post-experimental questionnaire asked participants about their driving experience and perceived
driving-induced stressors. The Institutional Review Board (IRB) approved all procedures. Participants
signed consents, and were insured against accidents upon approval of a valid driver’s license.

In-situ Experience Sampling. To interrogate participants stress levels, we extended conventional
Experience Sampling Method (EMS) [3] by interleaved questions triggered by in situ events. We
measured subjective stress responses via a simplified version of the Perceived Stress Scale (PSS)
[13]: “How stressed do you feel right now?”. To camouflage that the intent of the study was to derive
stress-levels and avoid potential biasing of the participants, we added three additional questions: the
Affect Grid dimensions [14] “How energized do you feel right now?” and “How pleasant do you feel
right now?”, as well as level of concentration: “How concentrated do you feel right now?”. E1 instructed
the participants to answer all questions on a 11-point scale from 0 = “low” to 10 = “high”. The system
automatically sent out batches of question-quartets in randomized order throughout the length of the
drive. We chose the duration between the questions within a batch as well as between batches to be
random between 45 and 90 seconds, e.g., 8 batches in 45 minutes. To ensure that data included points
of peaks and troughs in stress response time series, E1 sent out four additional stress questions (2
for each condition) following procedure: based on automotive literature [2], we defined high arousal
situations, including (among others) traffic congestion, narrow roads, hazards and indications of
hazards, passing trucks and cyclists, and vehicle malfunctions; and low arousal situations, that apply
during the absence of the above. E1 monitored participants and driving contexts and sent out the
additional stress questions when she detected low and high arousal situations.

Measurements. As foundation for driver state estimation algorithms, we collected a series of data
streams previously used in the community. Beyond the subjective stress measures described above,
we captured physiological stress measures. Specifically, we recorded breathing rate (brpm, 1 Hz) and
ECG data (250 Hz) for heart rate (bpm) and heart rate variability (RMSSD in ms) analysis using the
Zephyr BioModule (https://www.zephyranywhere.com) worn around the torso. We further collected
electro-dermal activity (EDA) (4 Hz) with the Empathica E4 bracelet (https://www.empatica.com)
attached around the participants’ non-dominant arm wrist. To calculate driver cognitive load, we will
apply a vision-based algorithm previously validated for the “in the wild” driving context [4] using
driver video streams. From CAN bus data, we stored steering angle (100 Hz, degrees), speed (50 Hz,
mph), acceleration pedal position (50 Hz, degrees), and brake pedal position (25 Hz, degrees) to further
calculate stress-induced changes in driving behavior, e.g., changes in speed, acceleration, braking,
lane keeping, and steering reversal rates [15].

EARLY INSIGHTS

We derived participants’ subjective stress measures and labeled corresponding driving scenario and
environment of the data point, i.e. type of road, traffic density, and driving task. Results show that
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Figure 4: Reported stress level span
throughout the drive across participants.

participants’ reported stress level span (max - min value) ranged between 2 and 9 with a mean value of
M =5 points (SD = 1.75) (Figure 4). Overall, one-third of participants reported increasing stress while
one-forth reported decreasing stress throughout the drive. Further, we noted fewer high stress peaks
on highways, expressways, and mountain roads compared to city, campus, and neighbourhood driving
environments. Stress peaks were often concurrent with road obstructions or making wrong turns. The
considerable variance in driving-induced stress responses emphasizes the need for context-aware and
adaptive intervention systems.

NEXT STEPS

Further, we will deepen inferences to understand intuitive, desirable, and effective times to intervene.
Firstly, we will focus on additional time series analysis of driving-induced (subjective and physiological)
stress to validate early findings. Preliminary results showed two groups of participants that had either
continuous increases or continuous decreases throughout the commute route. This might suggest
that interventions are specifically effective and required at either the beginning or end period of an
individual’s commute.

Secondly, the aim is to leverage our data set to train algorithms to automatically recommend
appropriate times for interventions. The goal for the driver state estimation system is three-fold; it
ought to be: (1) robust to variable on-road conditions, (2) preferably unobtrusive, and (3) capable of
generating an accurate classification of driver stress state given only limited time of measurement
data (e.g., 30 sec). To generate a valid training data set, we will process the various data streams
(including e.g. artefact correction). Further, we will generate post-hoc labels of all road events include
destination-related events [2] (e.g., arriving, leaving, parking), traffic-related events (e.g. tailgating,
passing construction), call related events (e.g. call attempt and speaking on the phone), blind turns;
passing behaviors (e.g. vehicles, cyclists and pedestrians); and driving-related events (e.g. changing
lanes), and interactions with other vehicles (e.g. aggressive comment by other vehicle, tailgating);
and in-vehicle stressor events (e.g., elicited by interaction with GPS, and/or by system alarms). By
means of supervised learning, we aim at distilling: (1) those events that are stress inducing, and/or
cognitively demanding, and/or prone to risky driving. We grade those periods as critical to apply
stress management interventions. After starting to test algorithms, we will evaluate the need for
running additional participants.
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