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Abstract
This paper discusses technology’s potential role in the inad-
vertent leaking of information related to mental health con-
ditions, a particularly sensitive and legally protected part of
one’s identity. Social media as well as emerging technolo-
gies such as brain-computer interfaces (BCIs) are changing
the way that we interact with each other and the world. They
also offer new windows into deeply personal and previously
private aspects of our identity, and may leak this information.
For example, with the vast amounts of public data on sites
such as Twitter, we can now identify individuals even when
they are using anonymous user accounts [35]. The inter-
nal state of an individual’s neural activity is, in many senses,
the most private of personal data. Until recently it was im-
possible or highly inconvenient to gain access to this type of
information. With these barriers lowering rapidly, it is critical
to look carefully at the privacy implications.
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Introduction
Functional near-infrared spectroscopy (fNIRS) brain imag-
ing is increasingly being used in mental health clinical set-
tings [18, 50, 31, 27]. It has the potential for both contin-



ual lightweight monitoring and in diagnosis. At the same
time, we have seen recent progress toward consumer-grade
BCIs devices that are capable, affordable, safe, and portable,
moving their use out of clinical settings and into new do-
mains. There are proposals to leverage these devices’ ability
to detect various cognitive states for applications such as au-
thentication [10, 47], games, learning [46, 2, 20], and mon-
itoring cognitive load in high-stress environments [4]. The
fact that the same devices can be used for clinical purposes
as well as entertainment and productivity purposes leads to
a critical question: What personal health information might
be leaked as people use BCIs in work or recreation? To
facilitate the respectful usage of such technology, we must
proactively study the feasibility of attacks on privacy, and ex-
plore potential mitigations.

Parallel to these developments, there has been increasing
amounts of research in stylometry and sociolinguistics aimed
at detecting and diagnosing mental health conditions from
text, especially text on social media [11, 14, 12].

Diagnostic & Side Channel Potential of Language
Stylometry is the use of statistical analysis of written lan-
guage, to uniquely identify a person. Features used may in-
clude the lengthe of words, pairs of words, vocabulary usage,
sentence structure, etc. Several resources give an overview
of stylometry methods [51, 29]. Recent developments have
led to robust classifiers using machine learning and other AI
techniques [21, 49, 51]. This field has advanced sufficiently
that its findings are routinely accepted as evidence in court
[8].

The study of how language is reflected in mental health is
a relatively new, but active area of study. Initial, pioneering
work was done to quantify the psychometric properties of
language use [38], and to build a program Linguistic Inquiry

and Word Count to help in analysis. Language use has been
shown to be a precursor of cognitive decline in studies of
popular authors writing over time [52] and in the longitudinal
Nuns study [42]. More recently, researchers have shown that
it is possible to detect depression [13], PTSD [15], suicidal
ideation [14], and many other mental health conditions via
text published on social media platforms. In fact, for the past
three years, there has been a workshop on Computational
Linguistics and Clinical Psychology attached to the North
American Association of Computational Linguistics (NAACL)
conference devoted to the subject.

Stylometry is a wide field, and besides being recently used
to explore the relationship between language and mental
health, it has also been largely focused on profiling authorial
traits [3, 16, 28, 33] such as gender, age, education, or even
authorial personality [33, 40, 41]. For example, the detec-
tion of native language and language family from English text
has been explored [45]. Some of this work has been used
to predict sensitive information such as attrition in organiza-
tions [37]. The ability to detect private information presents
a significant privacy concern, which will have implications as
these methods are used for diagnosing mental health con-
ditions such as Alzheimer’s, depression, psychopathy, even
suicide risk.

Diagnostic & Side Channel Potential of BCIs
Several techniques measure the changing state of the brain:
functional magnetic resonance imaging (fMRI), positron emis-
sion tomography, electroencephalography (EEG), and mag-
netoencephalography and functional near-infrared spectroscopy
(fNIRS). EEG and fNIRS are the two main methods that have
seen adoption outside of clinical settings due to their porta-
bility, relative low cost, and safety. EEG detects electrical
impulses coming from the neurons firing in the brain, while
fNIRS measures blood flow and blood oxygen changes re-



lated to the hemodynamic response, and is more similar to
fMRI. The methods are complementary and can be mea-
sured simultaneously.

Research in mental health settings using fNIRS indicates
that it could serve as a diagnostic tool for illness conditions
related to affective disorders as well as disorders of self reg-
ulation. There is emerging evidence of biological correlates
of mental status. For example, PTSD has been found to af-
fect the speech production center of the brain and depres-
sion and schizophrenia have been associated with atypical
activity [18, 26, 50]. fNIRS has been found to be related to
specific brain pathways of reward perception in eating disor-
ders, reduced pre-frontal cortex activation in depression and
differential activation in schizophrenia [26, 31, 50]. These
markers can be considered a brain signature for disorders.

Brain data can pose privacy threats as well. There has been
considerable interest in its use as a biometric authenticator.
Both fNIRS and EEG technology have been used as authen-
tication metrics achieving high accuracies [36, 19, 39, 9].
Thorpe et al. [47] also researched the feasibility of using
BCI for authentication, bringing up the ethical and privacy
concerns of developing such a system. Venkatasubrama-
nian et al. [53] show that certain physiological data is unique
enough to be used to create an encryption key for sending
patient data. Inherent in this is the fact that each person has
a unique brain signature. Researchers have also explored
side channel leakage of private information in BCI settings.
For example, researchers have demonstrated the future po-
tential for co-opting an EEG setup intended for one purpose,
such as gaming, to extract unrelated, potentially private in-
formation [30].

Potential Scenarios in Mental Health
Research on reward pathways for eating disorders [32, 34]
shows distinct patterns of participant gender and preferences
which act as an individual signature that is objectively de-
terminable using fNIRS. These markers can be considered
a brain signature for disorders and potentially misused and
abused by limited privacy protections. For example, the wire-
less fNIRS sensors available now could detect variations in
reward perception leading to selective marketing to individ-
ual with a predisposition to addictive behavior and limitations
in self regulation. Similarly, hemodynamic indicators of mood
and affective disorders could be misused to discriminate and
target patients. It might also be used to challenge diagnoses
based on behavior or self report measures alone. For ex-
ample, a patient’s request for disability or treatment might be
challenged if a parallel fNIRS brain signature does not indi-
cate the behavioral symptoms. This data might be collected
as part of routine care without adequate informed consent.
Patients need to be aware of the limits of privacy when par-
ticipating in clinical procedures and the use of such data. Of
particular note is the concern around the digital data gen-
erated from fNIRS. If not adequately protected, the digital
data on hemodynamic responses could be manipulated and
misrepresented by malicious individuals, as well as, for-profit
ventures agencies seeking to make illegal profits including
insurance companies, legal agencies and healthcare profes-
sionals. An additional issue with data generated by fNIRS
is the archiving and secondary analysis of large databases
as well as individual files for further analysis and research.
Patients often might not know if and how their data might be
used and what personal information might be shared as part
of research or business and marketing efforts.

Users expose their language and brain data whenever they
use brain-computer interfaces or enter textual information to
online platforms, opening the possibility of the data being



used to infer private information about them. This might lead
to unequal treatment, including in the workplace, in online fo-
rums, and less access to benefits that they would otherwise
have access to.

Toward Effective and Responsible Systems
Given the potential for detecting mental health state that brain
and text data can offer, when machine learning techniques
are applied to them, it is important to design and build sys-
tems that leverage this capability that help the target popula-
tion realize that they need help. At the same time, we should
prevent mental health information from being inadvertently
leaked and used by third parties putting subjects at a disad-
vantage.

We are currently investigating side channel leaks emerging
in the use of brain-computer interfaces and social media,
with a focus on mental illness. We combine our backgrounds
in studying mental health including depression, disorders of
self regulation and post traumatic stress disorders (PTSD)
[55, 23, 25, 24, 54], with our work researching implicit brain-
computer interfaces [43, 44, 48] and our experience investi-
gating the privacy implications when using machine learning
on complex, personal data [5, 6, 1, 7, 17, 22] to study pri-
vacy threats and develop appropriate mitigations. The ques-
tions described above will inform public debate on technolo-
gies that may leak private mental health information. This
will enable the consideration of regulations early, before the
technologies are widespread and their exploitation has al-
ready occurred. In addition, our findings in identifying mental
health issues from everyday tasks could be integrated into
future work in which these methods are used to inform the
appropriate people (e.g. therapist, psychiatrist, or self) about
a condition. When used appropriately, such a tool would be
valuable in the assessment of mental health conditions and
risks. The investigation of the potential disconnect between

self-report and brain-report will have implications for brain-
computer interfaces more generally. It will provide some
early evidence about how much we can rely on brain data
and how much people are able to manipulate it.
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