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Abstracf- Towards the goal of developing stable humanoid 
robots and leg prostheses, we present a biologically motivated 
control strategy for walking where system angular 
momentum is explicitly controlled. Using human kinematic 
gait data, we calculate the distribution of spin angular 
momentum throughout the human body at slow and self- 
selected walking speeds. Principal Component Analysis 
reveals three angular momentum primitives that explain 
99% of the walking data for sagittal plane body rotations. In 
addition, our analysis shows that the angular momentum 
primitives are invariant with walking speed Using these 
biomechanical results, we simulate human walking during 
the single support phase using a morphologically realistic 
humanoid model walking in the sagittaJ plane. There is 
minimal predefined specification of the desired gait motion. 
With only the model's walking speed and stride length as an 
input our control system searches for joint reference 
trajectories that minimize the error between the model's 
angular momentum distribution and the biologically 
determined distribution. Resulting model joint kinematics 
are in qualitative agreement with human gait data, 
suggesting that exploiting invariant angular momentum 
primitives in humanoid control may prove critical to 
achieving biological realism in legged robots and prostheses. 
The angular momentum primitives framework c m  
substantially simplify the praeess of gait synthesis and enable 
the operator of a humanoid robot or powered leg prosthesis 
to easily change stride length andlor walking speed. 

Kepvor&-walking;conmI; angular momenmm 

I. INTRODUCTION 
OAen the Central problem with controlling a multi-joint 

robot interacting with the external world is split into two 
distinct but coupled problems: 

planning the predefinedjoint trajectories 

tracking the actualized predefined joint trajectories. 

In recent decades successful effort has been devoted to 
address the latter problem [I]. However, in the field of 
humanoid robotics, many issues are still left unresolved for 
the former problem [2]. 

The ambitious goal of the field of humanoid robotics is 
to have robots that can perform biomimetic motions and 
hopefully someday even exceed human capabilities, and 
dynamical actions in realistic conditions [3-71. The 
planning of predefined trajectories for humanoid robots 
should address the following: 

The joint motions are physically realizable (e.g. the 
resulting ground reaction force is pointing up and 
center of pressure (CP) is inside the foot support 
polygon)'. 

The required dynamical action is constrained to be 
within the limits of the plant capabilities. 

The trajectory is optimized such that a large range 
of disturbances can be rejected. 

Fast transitions from one task's condition to 
another such as changing the walking speed or to a 
complete task change such as from walking to 
running. 

' As discussed in [E] the CP trajectory can be obtained 
from the planned joint trajectories. If computed CP falls 
outside the foot support polygon that should not be 
necessarily viewed as an indication of postural instability, 
but rather, as an indication that the planned joint 
trajectories are not physical. Similarly, the FRI point [9] 
being outside the foot support polygon should not be 
always viewed as an indication of postural instability. 

1685 0-7803-8.rs3-WO4S20.00 C20M IEEE 

http://markori2imedia.mit.edu
mailto:amvioie@media.mit.edu
http://hherrfi2media.mit.edu


Various metrics of motion quality are optimized as 
well (e.g. energy expenditure for walking [IO] or 
total torque about plant’s center of mass (CM) and 
sum ofjoint torques squared [ I  I]). 

Superposition of several tasks (e.g. walking and 
holding a glass of water). 

Necessary time delays from robot response times. 

The realistic humanoid model has more than 30 degrees 
of freedom (DOF) specifying its movement. As well, 
various tasks, different conditions for the same task, 
external world conditions and all their possible 
combinations are quite numerous. Therefore, it is not just 
that the optimization problem of fmding the hest trajectory 
for one specific activity is very complex but the whole 
space of possible motion requires immense amounts of 
memory to contain all the solutions. The natural question 
then is how is this performed in humans? 

We believe that part of the answer is that the predefined 
trajectories should not be given as very detailed and very 
precise information and that it should be up to the control 
algorithm, that operates on a time scale of 100 ms, to 
decide on all joint trajectories based on high level 
requirements. In extreme cases, for example for walking 
task, one could imagine that the predefmed trajectory is 
given only by the simple desired CM trajectory 
specifications, similar to [11,12,13] and maybe in addition 
some predefined whole plant angular momentum, similar 
as proposed in [11,14,15]. The controller, based on the 
plant’s. state, then needs to quickly decide on all joint 
accelerations such that some of the basic balance 
requirements are satisfied. This concept clearly puts some 
burden on the controller that needs to perform some type of 
optimization in real time (i.e. not just a simple PD control 
about the predefined joint trajectories). With many degrees 
of freedom and various potential disturbances, the question 
is how this optimization can be performed rapidly and 
efficiently. 

To deal with the complexity of humanoid movements a 
reduced order architecture is needed. Recently, the concept 
of motor primitives has been discussed in the literahue in 
the context of dimensional reduction. Experiments 
involving multiple point stimulation of a frog’s spinal cord 
[I61 demonstrated that a limb’s endpoint generated force 
field obeys the principle of superposition. Moreover, only a 
small set of primitive force fields was sufficient to explain 
a large data sample [ 161. These findings support hypothesis 
that the central nervous system may generate a wide 
repertoire of motor behaviors through the vectorial 
superposition of a few motor primitives stored within the 
neural circuits in the spinal cord. Experiments on human 
reaching movements [I71 gave further support for this 
concept. Theoretical studies [ 181 correlated system’s ability 
to learn with the actual functional form of its dynamic 
primitives. The kinematics trajectories of planar human 
ann were studied [I91 and motor movement primitives 
were obtained based on the principal component 
decomposition. A similar method bas been used for 
humanoid 3D upper body controllers [20]. The motion 

primitives were first extracted and then used for control 
with small set ofbasic controllers [ZO]. 

In this study, the motor primitives approach is used for 
the first time to analyze whole body movements. 
Moreover, this is the first study where body segments’ spin 
angular momentum distribution is used to generate motor 
primitives. Motivation for this approach came from the 
evidence that for a large class of activities, such as 
balancing while standing, walking and running, the human 
body closely regulates total spin angular momentum [II ,  
2 1-24]. 

In this investigation we use principal component 
analysis to obtain spin angular momentum primitives. We 
hypothesize that only a small number of primitives are 
sufficient to explain 95% of the whole body walking data 
across a range of walking speeds. We further hypothesize 
that these angular momentum primitives can be used to 
generate biologically realistic motions in a morphologically 
realistic human model. Moreover, we anticipate that this 
approach will simplify the control problem by reducing the 
whole body state to a much lower dimensional 
representation. We test these ideas by observing and 
analyzing biological gait data for one test subject (Section 
11) and by simulating a single support phase in walking of a 
2-D morphologically realistic human model using a control 
methodology based on angular momentum primitives 
(Section 111). In addition we discuss alternatives to our 
controller that should increase the robustness of the 
presented method (Section IV). 

11. BIOMECHANICS 

A. Methods: Kinematic Gait Analysis 
Ground reaction forces, center of pressure (CP) 

trajectory and kinematic data describing human limbs 
during walking were obtained in the Gait Laboratory of 
Spaulding Rehabilitation Hospital, Harvard Medical 
School. The healthy normal subject walked at slow and 
self-selected moderate speeds for seven trials each. The 
ground reaction forces were measured using 2 AMTI 
forceplates (model OR6-5-1, AMTI, Newton, MA) at the 
frequency of 1080 Hz. The forceplates had a precision of 
approximately 0.1 Newton. The limb trajectories were 
acquired using an infrared VICON Motion Capture system 
(VICON 512, Oxford Metrics, Oxford, England). Thirty- 
three markers were placed on the subject’s body: sixteen 
lower body markers, five trunk markers, eight upper limb 
markers and four head markers. Motion data were gathered 
at a frequency of 120 Hz. Depending on the position and 
movements of the subject, the VMC could detect the 
marker positions with a precision of a few millimeters. 

The human model [ I l l  used for gait analysis consisted 
of 16 links: right and let? feet, shanks, thighs, hands, 
forearms, upper arms, the pelvis-abdomen region, the 
thorax, the neck and the head. The feet and hands were 
modeled as rectangular boxes. The shanks, thighs, forearms 
and upper arms were modeled as truncated cones. The 
pelvis-abdomen link and the thoracic link were modeled as 
elliptical slabs. The neck was modeled as a cylinder and the 
head was modeled as a sphere. This model is shown in Fig. 



I .  About twenty physical measurements of the subject's 
links dimensions were taken to accurately model the 
subject. Based on the links' dimensions the link's masses 
and densities were modeled to closely match the 
experimental values [25,26]. The human model had a total 
of 38 degrees of freedom; 32 intemal degrees of freedom 
(12 for the legs, 14 for the arms and 6 for the rest) and 6 
extemal degrees of freedom. 

Figure 1. A human model, consisting of 16 ig id  links, was used l o  
ealculale the distribution of the angular momenhlm throughout the 
human body from the gait dan. 

The angular momentum about the body's CM of each 
link was calculated as a sum of the orbital and spin 
components. The orbital component was given as the 
angular momentum in the body's CM frame of the point 
mass located at the link's CM with the mass equal to that 
of the link. The spin component was the angular 
momentum of the link in the link's CM frame. 

Principal component analysis (PCA) was performed on 
each links' angular momentum, for each of the three spatial 
components, to give the angular momentum primitives. 
The eigenvalue problem of the 16 by 16 (16 was the 
number of links of our human model) data covariance 
matrix was solved. The eigenvectors were then ordered by 
the respective size of their eigenvalues. In this way a new 
16-dimensional hasis was obtained where basis vectors, 4 ,  
were linearly independent and ordered by their statistical, 
i.e. data dependent, significance. In principle, only some 
basis vectors were utilized to reproduce the initial data set 
at chosen level ofprecision. 

The actual time dependent normalized dismbution, 
c,(t)  of each PC vector 8 as a function of the gait cycle 
was then obtained by the projection method. The projection 
method finds the scalar product of the ith PC, 4 ,  and the 

normalized gait spin distribution L(t) /  I E(t) I with both 
represented in the original links' angular momentum basis. 
The time dependent normalized distribution coefficients 
satisfy 

B. Resulfs: Angular momenhrm primitives 
The fmt principal components, i.e. angular momentum 

primitives, in the sagittal, coronal and transverse planes 
explained approximately 90%, 75% and 85% of the data, 
respectively. The first three primitives in each plane 
combined explained 99%, 95%, and 95% of the data, 
respectively. To compare the PCs of two different speeds 
their scalar product was found. The scalar product of the 
first primitives, of the same subject, at slow and moderate 
walking speeds was larger than 0.99 for all three spatial 
directions. The scalar product of the second primitives at 
these same walking speeds was only slightly smaller, or 
0.99, 0.98, and 0.97 for sagittal, coronal and transverse 
plane rotations, respectively. These observations suggest 
that the angular momentum primitives are largely invariant 
to walking speed. 

Fig. 2 shows the first three angular momentum 
primitives, with largest data explained. Fig. 3 shows their 
average normalized distributions, c , ( t ) ,  c,(t) and c,(t) as 
a function of the percentage of the gait cycle. In addition to 
these fmdings we have also observed that the first three 
primitives' distributions for slow speed, c t ( t ) ,  and 

moderate speed, c y ( t )  , of the same subject overlap at one 
standard deviation throughout the whole gait cycle with 
standard deviations on the order of several percent from the 
mean value. The speed invariance of the PC and their gait 
cycle dependent normalized distributions makes angular 
momentum primitives a useful tool for gait synthesis. 

'I 
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Figure2. The first three angular momenNm primitives in the sagiftal 
plane and their respective data explained. The abscissa numbers and 
human model links are paired io the following order: lefl foot (I), right 
fool (2), left shin (3). right shin (4), lee thigh (5 ) ,  dght Ugh (6). lee 
hand (7). right hand (E), left farem (9), right forearm (IO). left upper 
arm (11). right upper arm (IZ), abdomen and pelvis (l3), thorax (14). 
neck(I5)and head(l6). 
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Figure 3. The average disuibufion ofthe first three angular momentum 
primitives as a function of !he percentage of the gait cycle. By 
convention, 0% and 100% repremi conSeCUtive heel mikes ofthe same 
fwt. The first primitive with largest data explained is represented with 
solid line, the second primitive with a dashed line and the third primitive 
wilh a doned line. 

111. CONTROL 

A. Methods: Angular momentumprimitives 
Towards the final goal of developing a biomimetic 

walking robot, the angular momentum primitives were 
used to define the motion of a humanoid model following a 
simple predefined CM trajectory of constant height and 
speed. Our control system searched for joint reference 
trajectories that minimized the error between the model's 
angular momentum distribution and the biologically 
determined distribution. 

As utilized for this controller, given the stride length 
and walking speed the position in the human gait cycle can 
be very precisely determined based only on the CM 
position in respect to the stance foot. This is because the 
CM deviates only slightly around the point that is moving 
with constant forward speed. After the estimate on position 
in the gait cycle was made, the results presented in Fig. 2 
and Fig. 3 were used to determine desired biomimetic spin 
distribution. 

B. Methods: Humanoid structural model 
The eigbt degree of freedom (DOF) humanoid model 

consisted of eight rigid links or appendages: a pair of feet, a 
pair of shanks, a pair of thighs, a pelvis and abdomen as 
one link and a thorax. The model moved in the sagittal 
plane only and had one non-rotating stance foot at all time. 
This gave the model effectively seven DOF. 

C. Methods: Conlrol algorifhm 
Fig. 4 illustrates the control method employed for OUT 

current simulation and results. For this implementation, the 
Robot block and the Dynamics Model block were 
equivalent. The general flow of the controller is described 
below. Based on the robot's actual joint angles, q(t)  ,joint 

angular velocities, q' ( t )  and joint angular accelerations, 

q'( t ) ,  an initial optimizer quickly determined a suggestion 

for the next time step's joint accelerations based on the 
spin distribution data. The final optimizer then finely tuned 
the offered solution by performing a more sophisticated 
search in the close vicinity of the initial optimizer's 
suggested joint acceleration vector for the next time step's 
joint accelerations. The optimization was based on 
minimizing the cost function from the vector of terms, 
j ( f ) .  These fully-optimized joint accelerations were 
applied to the robot. The robot's actual kinetic data then 
updated the cost function and simultaneously began the 
initial optimizer for the next time step. 

The concept behind the initial optimizer is as follows. 
Given the estimated CM position and velocity at the next 
time step together with the stance foot position, the spin of 
the stance foot at the next time step was calculated. The 
controller then estimated the appropriate gait phase and 
used the speed invariant biological spin distribution to 
generate the links' desired angular momentum at the next 
time step. Given this desired angular momentum 
dismbution, the joints' desired angular accelerations were 
determined. This solution then served as the initial guess 
for the final optimizer. 

The procedure to generate the links' desired angular 
momentum consisted of optimizing the stance ankle 
acceleration so that the shin's angular momentum matches 
the desired spin. The same procedure is then applied to the 
knee joint, so that the stance thigh's angular momentnm 
matched the desired one, and this was continued for all 
other joints. By starting with known foot dynamics the 
whole body spin distribution was optimized to reproduce 
the biological distribution. This procedure significantly 
simplified the process of spin distribution optimization. 
Instead of a complex nonlinear optimization problem 
defined in N-dimensional space, where N is the number of 
degrees of freedom, the problem is reduced to N simpler 
one-dimensional problems. With a 2.4 GHz PC used for 
our simulations, the time for obtaining the initial 
optimizer's solution was generally two orden of magnitude 
smaller than the size ofthe physical time step, 0.25 ms. 
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Figure 4. Block diagram of conuoller. The vecbm ? ( I ) ,  < ( I )  and 

< ( t )  denote the position. velocity and acceleration ofthe robot’s joints. 

The vector y(t) denotes thc c a t  function t- to be optimized. The 
subscript’s L? andp denote, respectively the actual robot VIIUCS and the 
best guess for the next joint accelerations based on the initial optimizer. 
The subscript n denotes the nth iteration of the optimizer. The variable 
CF(o) is the cost of the nth itemtion ofjoint accelerations. The subscript 
des denotes the suggested change to the cost function terms based on the 
robot’s acml rcsponsc. The subrript opt denores rhe lowest cost choice 
ofnew joint accelerations. 

The effect of numerical errors in the estimated CM 
position and velocity, and errors in the appropriate gait 
phase estimates, was compounded for links that were 
further apart from the stance leg foot. In the curremt 
implementation, to increax the quality of the initial 
optimizer’s solution, the swing leg’s hip, knee and ankle 
joint angular accelerations were also optimized to secure 
foot clearance, to minimize the error between the actual 
and desired CM trajectory and each joint’s acceleration 
was constrained so that the joint’s angles at the next 
simulation step were inside the biological angle ranges. In 
addition, the swing leg motion was optimized to ensure that 
the vertical projection of the CM onto the ground was close 
to the center of the projected-swing-foot support polygon 

The PSP was defined here as the polygon that encloses 
the stance foot and the vertical projection of the swing fwt  
onto the ground. In gait shldies we observed that the 
projected CM position always falls inside the PSP and is 
never too far from its center. This may represent part of the 
human motor control strategy for addressing small to 
medium size disturbances. When efforts to balance cause 
the swing leg to suddenly step down, it is likely to be 
beneficial that the CM projection is not very far from the 
center of the PSP so that the plant could be most efficiently 
stabilized. 

(PSP). 

When the starting guess was specified, the final 
optimizer performed a medium-local gradient based type of 
search in the large N dimensional space with small, limited 
number of search points. With a Matlab based (Mathworks, 
Natick, MA) implementation and several hundred search 
points this optimization took about 80 ms real processing 
time for the simulation’s 25 ms time increment. The cost 
function included the sum of biologically weighted joint 
torques squared, where weighting factors are given by the 
biological peak values for the single support, the sum of 
joint torque derivatives squared and the desired CM 
position and CM velocity. The desired CM trajectoly was 
represented as a point moving with constant speed. The 
cost function included very large terms to limit joint angles 
to biological ranges, and moderate terms to match 
biological spin distribution. The cost function included a 
term that penalized the FRI point proximity to the edge of 
the foot support polygon depending on the gait phase and a 
term that ensurzd the foot clearance also depending on the 
gait phase. 

To test the appropriateness of the gradient based search 
performed by (he final optimizer we experimented with 
another version of the final optimizer using the same cost 
function and utilizing a genetic algorithm type of search in 
a much larger volume of the N-dimensional space. In this 
case, for about IO6 search steps, the final optimizer’s search 
took an order of 100 s per simulation’s 25 ms time 
increment. 

D. Control: Results 
Fig. 5 shows six consecutive poses of the two- 

dimensional toy sagittal human model for the single 
support phase using the local gradient based final 
optimizer. The target CM, emergent CM, emergent FRI 
point together with emergent gound reaction force vector 
are also shown. This dynamical motion was obtained using 
the controller with a specified initial condition obtained 
from the biological gait data. Fig. 6 shows the joint angles 
(hip, knee and ankle for stance and swing leg) together 
with the actual biological gait data for comparison. 
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Figure 6. Simulation join1 angles (solid lines) are compared with joint 
angles f” biological gait &la (dotted line). A) Swing ankle. B) Swing 
!a=. C) Swing hip. 0) Stance ankle. E) Sfance knee. F) Stance hip. 

When comparing the local gradient based and genetic 
algorithm type search used by the final optimizer for the 
same initial plant state and the same initial optimizer guess 
we observed either the results of the two methods to he 
almost identical with no apparent gain in using the slower 
genetic algorithm search or the optimization results of the 
two methods were very different and at successive time 
increments the genetic algorithm based approach began to 
give increasingly p w r  results. 

IV. DISCUSSION 
From biological gait data we observed all joints 

collected behavior in terms of angular momentum 
distribution. The collected behavior, i.e. angular 
momentum primitives and their respective gait dependent 
normalized distributions are invariant with speed. We also 
observed that using these angular momentum primitives 
reduces the dimensionality of the problem; for sagittal 
plane rotation we find three primitives that effectively 
explain all biological walking data. Based on these 
observations we proposed a novel control architecture. 

Our current control architecture u t i l i s  two distinct 
optimizers, the initial optimizer and the final optimizer. 
The advantage of having the initial optimizer is that it 
quickly genemtes highly biomimetic results even though no 
predefined joint trajectories are employed. Using the speed 
invariant angular momentum primitives effectively reduces 
the search in the large N dimensional space to N one- 
dimensional optimization problems. The optimization of N 
DOF using D search points per DOF requires 
computations. By our method, this optimization has been 
reduced to D. N computations. Even with this reduction 
in the number of computations, an initial guess that is very 
close to the global minimum of the entire N-dimensional 

space can still he found. Having an initial guess in the 
vicinity of the optimal solution simplifies the final 
optimizer’s search. The final optimizer’s search can then be 
only medium-local and fast enough so that real time control 
is achievable. 

For the sagittal eight DOF model with known dynamics 
and no external disturbances, the initial optimizer gave 
notably biomimetic results. For this simulation the 
presence of the final optimizer has not offered a particular 
advantage to our control scheme; the visual solution of the 
figure walking was not different h m  the solution found 
using the final optimizer. However, for the control of a 
physical robot, i.e., a plant embedded in realistic 
conditions, we anticipate an important role for the final 
optimizer. The initial optimizer, using the cment 
arcbitechue, is most likely insufficient to reject various 
disturbances to the plant, so that the initial optimizer’s 
solution will need to be improved hy the final optimizer. 

To further improve our control methodology we are 
currently .experimenting with variations in the input spin 
PC distributions. We are varying only the frst  three PCs 
about the initially estimated value, obtained by the method 
described earlier. For’each slightly varied combination of 
the first three PC’s we repeat the same procedure, as with 
the original initial optimizer, of solving N one-dimensional 
problems and then to obtain the joint cost function for the 
whole plant. Finally, among all probed combination of the 
first three PC distributions we choose the one with minimal 
cost. As our preliminary results suggest, this procedure 
eliminates errors in the initial estimation of the spin 
distribution and it also rejects the numerical error more 
robustly. We hope that in this way we might address 
significant disturbances on the plant. With this 
improvement of our initial optimizer, our hope is to 
completely eliminate the final optimizer from the control 

For very large disturbances we anticipate a switching 
mechanism that will completely end the walking task and 
concentrate on pure balancing mechanisms. For the control 
of a physical robot, we anticipate having an adaptive 
control scheme. Also, as indicated in Fig. 4, we plan to 
experiment with cost function updating mechanisms that 
we hope will improve the quality of motion in a 
biomimetic and stability sense. In this way our controller 
will not just address the real dynamical response of the 
robot not anticipated with a physical model, hut it will also 
adapt for specific dynamical posture cases when some of 
the cost function terms would need to dominate over 
others. 

In this study, the two dimensional 8 DOF sagittal model 
served as the most simplified test bed (or a toy model) for 
the presented control methodology. Our ultimate goal is 
real time control of a morphologically realistic humanoid 
robot. In future investigations, we feel exploiting invariant 
angular momentum primitives in control may prove critical 
to achieving biological realism in legged robots, orthoses 
and prostheses. 

loop. 
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