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 Abstract – Advanced humanoid robots capable of 
operating in complex 3-D environments will likely utilize 
an on-line optimization strategy where joint accelerations 
are varied to achieve whole-body postural balance.  To this 
end, we propose one such strategy that optimizes global 
body parameters such as spin angular momentum and 
body principal angles, or the angles between the inertia 
tensor principal axes and the lab frame axes. This 
optimization strategy is easily combined with other 
optimization objectives (e.g. maximal efficiency) subject to 
physical constraints such as requiring that the ZMP 
operates within the support base.  To deal with Bellman’s 
“curse of dimensionality” we suggest, in parallel, two 
computational simplifications that may make the 
optimization problem tractable and easily implemented on 
today’s humanoid robots.  Finally, we address the problem 
of support base planning during ground and aerial 
locomotory phases.  We propose novel on-line strategies 
for robust coordination of interacting limbs compatible 
with the proposed optimization strategy.  
 
  Index Terms: humanoid, control, angular 
momentum, global motion control, support base planning  
 

I. INTRODUCTION 
Humanoid robots that can truly mimic human 
movement patterns have not yet been advanced and 
necessitate fundamental advances in hardware and 
control design [1,2].  Robust and adaptive control of 
autonomous humanoids is indeed a difficult problem.  
For humanoid robots to be practical and useful they 
should be capable of performing novel tasks within the 
same complex environment in which humans operate.  
Unlike industrial manipulators, it is neither possible nor 
meaningful to track a small set of predetermined joint 
trajectories [3]. Moreover, without an attachment base 
securely bolted to the ground, postural balance is a 
primary control task for humanoid robots [4].  Still 
further, the physical problem is not forgiving of bad 
control policies; for some situations even small errors in 
system state may have catastrophic consequences. 

General, precise and practical formulation of 
postural stability as a control problem remains elusive 
[6,7]. Many studies of repetitive motions utilize return 
map analyses a posteriori to tackle stability in a 

plant/task/condition (and particular target trajectories) 
specific manner. However, there are many potential 
plants, tasks and transitions as well as external world 
conditions. Hence, it seems beneficial, if not necessary, 
for an online controller to exploit an on-line 
optimization strategy where joint accelerations are 
varied to achieve whole-body postural balance. 

Time-local optimizations strategies for postural 
balance have been previously proposed. Studies relied 
on placing the center of mass (CM) ground projection as 
close as possible to the innermost point of the support 
base to ensure stability [8,9].  As known for centuries, 
stability is satisfied for the static case when the zero 
moment point, or ZMP, is positioned just beneath the 
CM [10,11].  Along similar lines, the ZMP distance 
from the support base boundary was employed as a 
stability margin [12].  Finally, recent studies explored 
the horizontal component (orthogonal to gravity) of 
angular momentum about the CM and the associated 
moment as indicators of postural stability [13,14]. 
However, by themselves none of these proposed 
stability metrics guarantee stability [15].  Moreover, not 
all of the proposed metrics are supported by 
biomechanical observations.  During a walking gait 
cycle, the CM crosses the support base only during a 
short segment of the double support phase.  Still further, 
the ZMP spans nearly the entire foot length during the 
single support phase.  Finally, the angular momentum is 
highly regulated in walking but is less regulated for 
activities like a twirling hula-hoop motion or balancing 
on a tight rope [14-17].  

In Section II we propose a novel angular 
momentum-based, optimization strategy expressed in 
terms of global quantities, or quantities representing 
whole body translational and rotational dynamics.  In 
Sections II and III we introduce the Global Motion 
Control (GMC) framework suitable for the control of 
high level integrated quantities. Though the proposed 
optimization strategy and ZMP location may be 
expressed only in terms of global quantities, we extend 
our control framework from global state to joint space 
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to effectively control balance as well as additional 
performance objectives. 

Due to the high dimensionality of the plant 
being controlled, the general optimization problem has 
to be simplified so that the controller may operate in 
real time.  One approach is to reduce the dimension of 
joint state space by utilizing motion primitives [18].  
Another approach is a hard-coded hierarchical or 
prioritized control [19,8,9].  Here the controller, local in 
time, first satisfies the most important task and then 
continues down a predetermined priority list.  Although 
this method fails to address situations when a real 
compromise between tasks needs to be made, it can be 
very efficient and operate in the context of a real time 
controller. This method was recently utilized for non-
contact limb balancing [20].  In Section III we propose a 
soft-coded variant of this approach in which the priority 
list is decided in an automatic, time-local fashion.  We 
also propose a non-prioritized approach for the control 
cases for which the cost function can be expressed in a 
particularly simple form such that an analytic solution is 
possible.  In Section III we illustrate the later method by 
enforcing linear dynamics and truncating all control 
variables to linear terms in joint jerks.  In Section IV we 
propose an approximate GMC-based time-local metric 
that may be utilized for support base planning during 
ground and flight locomotory phases. Finally, in Section 
V we condense our findings and point to future research 
directions. 

II.  GLOBAL MOTION CONTROL (GMC) 
A From Spin Regulation to GMC 
Biomechanical investigations have determined that for 
normal, level-ground human walking, spin angular 
momentum, or the body’s angular momentum about the 
CM, remains small throughout the entire walking cycle, 
including both single and double support phases [13, 21, 
14, 22]. In these investigations, a morphologically 
realistic human model and kinematic gait data were 
used to estimate spin angular momentum at self-selected 
walking speeds. Walking spin values were then 
normalized by dividing by body mass, total body height, 
and walking speed. The resulting dimensionless spin 
was surprisingly small. Throughout the gait cycle, none 
of the three spatial components ever exceeded 0.02 
dimensionless units [14]. If the human body is 
approximated with a uniform rod of length H then the 
minimal value of normalized angular momentum in the 
moment of fall caused by infinitesimally perturbed 

upright posture, would be 5.0
2

3
24

≈
gH

V
π  for V=1.3 

m/s. The gait studied in [14] would be within the 4% of 
this ad hoc angular momentum stability margin. 
 To determine the effect of the small, but non-
zero angular momentum components on whole body 

angular excursions, the whole body angular velocity 
vector and the corresponding angular excursions were 
computed, or 
 

( ) ( )CMCM rLrI 1−==θω ,  Cdttt
t

+= ∫
∞−
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respectively, where ( ) ( )∑
=

=
N
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 is the whole 

body inertia tensor about the CM and C is an integration 
constant determined through an analysis of boundary 
conditions [14]. Although there is no unique 
relationship between posture and the whole body 
angular excursion, the vector defined in (1) can still be 
accurately viewed as the rotational analog of the CM 

position vector, i.e. Ddttvtr
t

CMCM += ∫
∞−

**)()( . The 

results of these analyses show that the maximum whole 
body angular excursions within sagittal (<1o), coronal 
(<0.2o), and transverse (<2o) planes are negligible [14]. 
 
B GMC PD control law for global state  
Consider a simple PD control law relating whole body1 

angular excursions, θ , spin angular momentum, 
( )CMrL  , CM position, CMr , and CM momentum, p , 

with desired whole body net moment about the CM,  
( )CMdes r.τ , and net CM force, .desF , or  

 

( ) ( ) ( )CMCMtarCMdes rLbarLr ∆−∆−= ~~
. θτ , (2a) 

pdrcpF CMtardes ∆−∆−= ~~
.                (2b) 

 

In (2a) .tarθθθ −=∆ , .tarθ is the target body angular 

excursion; ( ) ( ) ( )CMtarCMCM rLrLrL .−=∆ ,  ( )CMtar rL .  is the 
target spin angular momentum; and positive definite 3 
by 3 matrices a~ and b~ are rotational stiffness and 
damping coefficients respectively. Analogously, in (2b) 

.tarCMCMCM rrr −=∆ , .tarCMr  is the target CM 

position; .tarppp −=∆ ,  .tarp  is the target CM 
momentum; and positive definite 3 by 3 matrices c~  and 
d~  are stiffness and damping coefficients respectively. 
For practical purposes, instead of whole body angular 
excursions, which are not directly measurable 
quantities, one may consider using whole body principal 
angles defined by the relative orientations of the 
principal axes of the whole body inertia tensor with 
respect to the non-rotating lab frame axes. 

                                                 
1 The term ‘whole body’ is used to denote the body plus 
any attached or carried weight (e.g. backpack). 
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The control designer may choose the diagonal 
form for matrices a~ , b~ , c~  and d~  and also set some 
of the diagonal elements to zero. For a humanoid robot 
in steady state walking, one may anticipate that the 
desired whole body angular excursion and the spin 
angular momentum would both be set to zero and the 
rotational stiffness and damping coefficients would then 
be adjusted to achieve a desired system response. Also, 

( ) Mtptrr tarCMtarCM /0 .. +==  with .tarp = const. for 

),0( Tt ∈ where T  is chosen period of time.   
The novelty of (2) is that it employs the 

rotational analog of the CM position and that it unifies 
all global quantities into one simple proportional 
derivative (PD) control law. We name this relationship 
the Global Motion Control (GMC) PD law. Similar to 
(2b), control of the CM position has been addressed by 
[23, 20] and joint linear and angular momentum control 
has been addressed by [24,25].  
 
C Stability metrics and GMC PD control law 
The GMC PD law does not communicate a priori any 
type of stability metric. By definition it is only a tool for 
controlling the global state variables. However, if 
specific terms, like ( ) .|horCMrL∆  with ( ) 0. =CMtar rL , 
denote the stability metric, then equation (2)  supplies 
important guidance for postural stability. Consider 
steady state walking — if rotational stiffness and 
damping coefficients ideally reflect the nature of the 
control problem then the actual moment, ( ) .. |horCMact rτ , 

of the opposite sign from ( ) .. |horCMdes rτ  should be 
considered destabilizing. However even the stabilizing 

( ) .. |horCMact rτ  may not guarantee actual postural 
stability unless it is the right magnitude.  

We now generalize the angular momentum 
metric to include angular excursions as well. In addition 
we add some level of sensitivity to the external forcing 
and task dynamics. 

Consider first the dynamics in the CM frame. 
In the non-inertial CM frame the body segments 
experience inertial forces in addition to external forcing. 
As we show next, CM non-inertiality embedded in (2b), 
i.e. .. constptar ≠ , may be coupled to rotational 
dynamics, (2a). The constant lab frame target 
acceleration may be thought to define a new effective 
gravity vector in the CM frame, Fig. 1a. The effect is 

identical to 0. =tarp  when the plant experiences 
constant and uniform non-ground-reaction-forces (non-
GRF) external forcing (e.g. wind), Fig. 1b.  In direct 
analogy with regular upright posture, i.e. zero non-GRF 
external forcing and zero target acceleration, we 
propose that target angular excursion and momentum 
components orthogonal to the effective gravity vector 

should be set to zero. Therefore, (2a) may be now 
expressed in decoupled form as 
 

( ) ( )
( ) ( ) ....

.....

||~
||~

vereffCMVhoreffCMH

vereffVhoreffHCMCMdes

rLbrLb

aarLr

∆−−

∆−−= θθτ
    (3) 

 
where the effective gravity vector is defined with 

.tarp and the slowly varying component of the non-GRF 
external forcing. The rotational stability measure is now 
represented by deviation of actual angular excursion and 
momentum from their most stable global state 
configuration  
 

0| ... =horefftarθ  and ( ) 0| ... =horeffCMtar rL .               (4) 

 

.tarpCM

gM−
)( GRFnon

externalF
−

 

gM−  

effgM  

A) B) 

0
)(

=
−GRFnon

externalF 0. =tarp  

CM

ZMP ZMP  
Fig. 1 Effective gravity vector for constant or slowly varying              

a) acceleration and b) non-GRF external forcing. 
Finally, all translational terms embedded in the 

GMC PD law, (2b), may be also thought of as indirect 
stability measures. However, they are more directly 
related to pure motion planning than to time-local 
postural stability measures. In other words, one is 
clearly more stable if the target CM trajectory doesn’t 
require body collisions with walls or falling down over 
the edge of a cliff (or from a tight rope/balance beam). 
 
D From PD control law to control potential 
Reference [24] utilized a version of (2) that included 
only damping elements. Numerical instabilities and hip 
angle limitations were encountered when all six 
elements of the target linear and angular momentum 
vector were specified. This observation motivated the 
introduction of a selection matrix that limited the 
number of elements to be controlled to only some of 
those six. This problem was further addressed with leg 
“constraints,” i.e. by tuning the predefined desired 
velocity for each foot [24,25]. We find this problem to 
be quite general —not every global forcing ( )τ,F  may 
be produced due to various physical limitations: 
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- ZMP is confined within the support base, 
- limbs cannot penetrate other limbs or surrounding 
solid objects,  
- joint angles and joint actuations are limited,   
- ground friction coefficient is finite [26] etc.  

If desired global forcing as suggested by (2) is 
outside the physically realizable region the simplest 
approach is to project the suggested solution to the 
physically realizable region. This approach was utilized 
in combination with prioritized control [8,19,9] for non-
contact limb balancing [20]. A deficiency of the method 
is that with the ZMP at the boundary of the support base 
the smallest imprecision may destabilize the system. Yet 
another option is to use a method of control potentials.  

The method of control potentials is particularly 
beneficial because a) physically meaningful solutions 
can be reinforced, as discussed below, and b) bias 
toward various target tasks can be easily introduced.  
The target task necessarily influences the choice of 
global forcing. For example, if the target task is to hold 
a glass of water, the whole body motion should not be 
very jerky.  

We introduce the positive definite Global state 
control potential, GSV , that may be either defined on 

( )τ,F  space with location of a minimum as suggested 
by the GMC PD law, (2),  
 

( ) 







−
−

−−=
.

.
..

~),(
des

des
GSdesdesGS FF

VFFFV
ττ

τττ ,         (5a) 

or it may be defined directly on  θ , ( )CMrL , CMr , 

p space as a sum of quadratic terms centered about the 
target values, i.e. 
 

( ) ( )..
~)( tarGSXtarGSX XXVXXXV −−= ,  ∑=

X
GSXGS VV .  (5b) 

 
Although control potential (5a) and (5b) may be equally 
applicable we will assume (5a) in the rest of the 
manuscript. The formulation (5a) is also more 
compatible with time local control approach that we 
enforce, see III C. For practical purpose one may 

assume diagonal GSV~  and introduce non-diagonal 
elements with two extra potentials described below.  
 
E The GMC on the global forcing   space 
Here we outline the basic structure of the GMC 
framework. As illustrated in Fig. 2, the GMC potential 
defined on the global forcing ( )τ,F  space may be 
represented as a sum of three control potentials: 
- Global State convex potential ( GSV ), (5a), minimized 
at the desired force and torque as suggested by (2);  

- Support base potential ( SBV ), enforcing ZMP within 
the support base and biased towards the innermost 
point, see Section III D;  
- Grand control potential ( GV ), enforcing other physical 
limitations due to the plant properties, particular plant 
state and environment as well as introducing bias 
toward the target tasks. The GV  represents a ( )τ,F  

projection of the Joint control potential ( JV ) defined on 
joint space (see Section III E). 

The final desired global forcing, ( )final
des

final
desF .. ,τ , 

is then obtained by minimizing the unified GMC 
potential  

 

GSBGSGMC VVVV ++=                   (6) 
 

on ( )τ,F  space. As we discuss in Section III C it may 
be beneficial to perform optimization directly on joint 
space instead of on smaller global forcing space. 

F  

τ

( ).., desdesF τ
( ) )min(VF GMC

final
des

final
des ⇐.. ,τ

SBV  
GSBGSGMC VVVV ++=

GV  
2ℜ

x  

y6ℜ

GSV

foot 

Fig. 2 The GMC potential defined on ( )τ,F  space is a sum of Global 

State ( GSV ), Support Base ( SBV ), and Grand ( GV ) potentials. 

III. GMC IN JOINT SPACE 
A Physical Model of the world 
The performance of an on-line robotic controller 
depends on the physical model of the external world. 
Clearly, like a human, a robot has to tune the parameters 
of the physical model. However not all physical models 
are compatible with the tuning/adaptation schemes 
necessary for robotics applications. One example would 
be the model based on kinematical constraints. The 
kinematical constraints approach assumes an infinitely 
stiff ground and necessitates some of the GRF to be put 
by hand (only two contact points in 3-D may be 
resolved based on motion).  

In contrast, the viscous-elastic approach is 
more natural as it assumes that interaction between the 
end-effector and external world, represented by 
Lagrange function, L , may be modeled as a function of 
the relative position and speed. Dynamics of the system 
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are completely specified with 6 root Euler-Lagrange (E-
L) equations and sjoN int  actuated joint angle E-L 
equations, or  
 

0=Γ=
∂

∂−







∂

∂
root

rootroot q
L

q
L

dt
d               (7a) 

0int
intint

≠Γ=
∂

∂−










∂
∂

sjo
sjosjo q

L
q

L
dt
d .              (7b) 

 

This approach requires neither the position constraint 
equation nor the undetermined Lagrange multipliers 
required by the kinematical constraint approach. The 
interaction forces between body and external world are 
completely resolved by time local motion (i.e. state plus 
joint accelerations), i.e. they are not artificially assigned 
by the control designer. Finally, the characteristics of 
different surfaces can be modeled such that one can tell 
the difference between stepping on cement, deep snow, 
wet grass, or sandy beach.  
 
B Control flow 
As illustrated by Fig. 3 the knowledge of state (positions 
and velocities) and accelerations at time 1−nt  defines the 
expectation of state at time nt  
 

( ) ( ) ( )( )111exp −−− −+≈ nnnnnected ttttt ααα                (8) 

( ) ( ) ( )( ) ( )2
11111exp )(

2
1

−−−−− −+−+≈ nnnnnnnnected tttttttt αααα . 

 

The state subsequently defines the expectation of 
forcing at time nt . Given the net force and net torque the 
root segment (usually body trunk) accelerations may be 
expressed in terms of state and joint accelerations, see 
(7a), all defined at time nt . Joint accelerations 

subsequently define unique joint torques at time nt , see 
(7b), and state at time 1+nt , similar to (8).  
 

1−nt  nt  1+nt  

( )net

externalF τ,⇒  state 

( ) ( )sjoroot fr int, αα =  

sjosjo intint Γ⇔α  

( ) ( )sjoroot fr int, αα =  

sjosjo intint Γ⇔α  

( ) ( )sjoroot fr int, αα =

sjosjo intint Γ⇔α

global state ∈ 

( )net
externalF τ,⇒  state 

global state ∈ 

( )net
externalF τ,⇒state 

global state ∈

Fig. 3 Control flow. 
The control task is to choose, based on complete 
information of state plus accelerations at time 1−nt , joint 

accelerations or equivalently joint torques at time nt  in 

order to define state and forcing at time 1+nt . The ith 

joint acceleration ( )ni tα  may be represented as the sum 

of joint acceleration ( )1−ni tα  and joint jerk 
 

( ) ( ) ( )1−−= ninini ttt αααδ .                (9) 
 

Hence, all quantities of interest at time 1+nt  may be 

represented as a function of ( )ni tαδ , sjoNi int,,1…= . 
 
C Linear dynamics and simple cost function 
The expectation value of global kinematics quantities 
(CM position, CM momentum, whole body angular 
excursion and momentum about CM) at time 1+nt  is 

independent of ( )ni tαδ . The expectation of position, 
velocity, forcing of any end-effector and therefore net 
force is a linear in ( )ni tαδ . Finally the expectation of 
moment about CM and principal angles (see Section II) 
is a quadratic function in ( )ni tαδ .  

The linear term, however, dominates for a 
small enough control time step (or small ( )ni tαδ  as 

( ) it tni ∀→→∆ ,00αδ ). For small time step it makes 
sense to enforce linear dynamics for the optimizer by 
truncating higher order terms for all control variables.  

The control problem may be even further 
simplified. Consider having only simple positive 
definite quadratic cost function terms 
 

∑ ∑ 






 −=
j i

ijij lkV
2

αδ               (10) 

 
where j counts different cost function terms and 

sjoNi int,,1…= . The minimum of V is expressed as a 
solution to a simple algebraic equation 
 

αδLK =                 (11) 
 

where ∑=
j

jmjm lkK  and ∑=
j

jnjmmn llL . 

The otherwise very complex and 
computationally demanding optimization problem on 
joint jerk space is now stated as a single algebraic 
equation. Because the solution can be obtained 
extremely quickly the control time step can be made 
very small to substantiate linear approximation. In 
contrast to hard-coded (priority list defined in advance 
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by the control designer) prioritized control [8-9,19-20] 
this method is analytical and non-prioritized. 

Another avenue would be to use general cost 
function terms, i.e. not truncated to linear terms in joint 
jerks, and apply a method that we call soft-coded 
prioritized control. The controller, local in time, may 
first satisfy the most sensitive task, defined by having 
largest overlap with gradient of control potential in 

( )ni tαδ  space, and then continue with next sensitive 
task in leftover space etc.  If the cost function indeed 
properly communicates the nature of the problem then 
the priority list should reflect that in time-local fashion.  
 

D GMC Support Base control potential SBV  
The ZMP as a function of the CM position, net force 
( CMaMF = ), and net moment about the CM can be 
expressed [15] as 
 

( )
MgF

r
z

MgF
Fxx

z

CMy
CM

z

x
CMZMP +

−
+

−=
τ               (12) 

( )
MgF

rz
MgF

F
yy

z

CMx
CM

z

y
CMZMP +

+
+

−= τ . 

 
We now introduce the positive definite Support 

base control potential, SBV , defined on ( )τ,F  space 
with the minimum corresponding to the innermost point 
of the support base ( ∗

zmpx , ∗
zmpy ), or 

 

( )
( )( ) ( )( )2211

),(),,(),(

nrrVnrrV

FyFxVFV

zmpzmpsbzmpzmpsb

zmpzmpSBSB

⋅−⋅⋅−

==
∗∗

τττ
,             (13) 

 

where 21, sbsb VV are positive definite functions 

(reinforcing ZMP inside the support base) and 21 nn ⊥  
are unit eigenvectors of the area matrix 
  

( ) ( )( )
( )( ) ( ) dxdy

yyyyxx
yyxxxx

X
SB zmpzmpzmp

zmpzmpzmp
SB ∫ 












−−−
−−−

=
∗∗∗

∗∗∗

2

2
      (14) 

 
and where integration is over the support base.  

To summarize, the Support Base control 
potential, SBV , penalizes net forcing when the ZMP is 
away from the innermost point. However, because this 
potential is only part of the GMC potential, the final 
choice of ZMP, while still physical, won’t be at the 
innermost point of the support base.   
 

E GMC  Joint control potential JV  
The control designer may decide to include various 
terms in the Joint potential, JV : 

- End-effectors position/velocity/forcing 
- Limits on joint angles  
- Sum of joint torques squared (static energy criteria) 
- Sum of joint powers (dynamic energy criteria) etc. 

Although JV  is originally defined on αδ  
space it may be useful to project it down to smaller 
( )τ,F  space. In this way one obtains Grand potential 
 

( ) ( ) ( )ταδτ ,|min, FJG VFV =               (15) 
 

as the minimum of JV subject to ( )τ,F  constraint. The 

motivation to study GV  clearly comes from the idea that 

GMC optimization may be performed on small ( )τ,F  
space alone. However if there is a large mismatch in 
dimensions between joint αδ  space and ( )τ,F  space 
then (15) may represent a difficult optimization 
problem. One would need to introduce a control 
simplification like that described in Section III C. Then, 
however, the actual size of the space makes little 
difference and eventually all joint torques need be 
commanded. 

To enforce no collisions between the end-
effector and obstacle the control designer may use the 
attractive control potential term compatible with the 
analytical non-prioritized control approach, see Section 
III C. The attractive potential, however, should be such 
that the end-effector is attracted away from the obstacle. 
Still further, the magnitude of this term may be tuned to 
address the end-effector’s speed. 

IV GMC SUPPORT BASE PLANNING 

A Ground Phase Support Base Planning 
Here we propose a time-local control strategy for 
generation of the support base. This method is 
applicable when ground contact already exists and it is 
independent of other details (double vs. single support, 
left vs. right swing leg etc).  

First we construct a virtual GMC potential,  
 

)( JGGS
virtual

GMC VVV += .                  (16) 

 
Next we find a minimum of virtual GMC potential and 

obtain ( )virtual
final

des
final

desF .. ,τ . Using this virtual desired 
force and torque one may obtain a GMC-based virtual 
ZMP location on the ground. Now we propose that the 
virtual ZMP should be located at the innermost point of 
the virtual support base defined by the convex hull 
obtained by the feet projection onto ground [18], see 
Fig. 4a.. Therefore, indirectly, for the single support 
phase the virtual ZMP defines a target value for swing 
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leg projection. For double support phase the virtual 
ZMP indirectly governs the feet rotation and toe-off.  

Some simplification might be possible. For 
example, for some situations, one may neglect the Joint 
(or Grand) potential and use only Global State potential 
or the net forcing ( ).. , desdesF τ  defined by the GMC PD 
law, (2), to obtain a simplified virtual ZMP. This 
approach is different from the one proposed in [14] 
where the zero moment condition is enforced. 

The actual timing of ground contact of the 
swing leg may be forced to coincide with the expected 
time of the ZMP entering the “dangerous zone” near the 
edge of the stance footprint. This expected time may be 
obtained from the measured ZMP position and velocity. 

Finally the swing leg velocity should be 
orthogonal to the surface at the moment of impact. The 
magnitude should be medium to avoid large stress.  
 
 

A) B) 

2/s  2/s  
GMC ZMP 

( )

ZMPGMC

V virtual
GMC

⇓

min
 

GMC ZMP  
Fig. 4 GMC-based virtual ZMP during a) ground and b) flight phases. 
 
B Flight Phase Support Base Planning 
The GMC is only indirectly applicable for the aerial 
phase. The system’s dynamics are then characterized by 
only the force of gravity and zero moment about the CM 
and are independent of suggested net forcing. Therefore 
the CM follows a parabolic trajectory with zero 
horizontal acceleration and the whole body’s angular 
momentum is a conserved quantity. Furthermore, the 
control potential SBV  is undefined on ( )τ,F  space 
without ground contact.  However the control potential 

GSV , defined on ( )τ,F  space, and JV , defined on αδ  
space, still exist. As we argued, the GMC may be 
applied indirectly.  The aerial phase optimizer may 
choose the landing time, placement of the foot and body 
posture/joint torque distribution that facilitate the 
subsequent GMC performance on the ground.  

In the aerial phase, GSV  potential varies with 
time. Its minimum, defined by the GMC PD law, (2), 
may be used to define the desired position of the landing 
heel in the horizontal plane via (12), i.e 

virtual
GS

virtual
GMC VV ≈ . Alternatively, one may employ the 

minimum of )(JGGS
virtual

GMC VVV += . The tendency to 
reposition the landing heel as a response to change in 
linear/angular position, vertical linear momentum and 
other joint cost functions may be represented by JV  
potential with new cost function term. If landing time or 
position is given in advance, that should also be 
represented by appropriate weighting in JV  potential. 

V SUMMARY AND FUTURE WORK 

We propose a time-local optimization strategy where 
joint accelerations are varied to achieve whole-body 
dynamic postural balance. This strategy optimizes 
global body parameters such as spin angular momentum 
and body principal angles with respect to their 
equilibrium global state configuration as defined by the 
effective gravity vector.  This optimization strategy is 
easily combined with other optimization objectives (e.g. 
maximal efficiency) subject to physical constraints such 
as requiring that the ZMP operates within the support 
base.  We suggest, in parallel, two computational 
simplifications that may make the optimization problem 
in joint space tractable and easily implemented.  We 
also propose a novel on-line strategy, founded on a 
GMC framework, addressing the problem of support 
base planning during ground and aerial locomotory 
phases. 
 In future investigations this theoretical model 
will be utilized and followed by several detailed studies 
on specific activities such as walking, running and 
jumping. These future investigations will 
simultaneously address human biomechanics and 
humanoid control.  It is our hope that this work will lead 
to further investigation into online optimization 
techniques that address postural balance of legged 
systems, resulting in an even wider range of locomotory 
performance capabilities of legged robots and 
prostheses. 
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