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Absmcl-We present an algorithm that provides enhanced 
flexibility and robustness in the control of single-leg 
humanoid standing through the coordination of Stance leg 
ankle torqoer and stabllizlng movemenb of non-contact 
Umbs. Current control approaches generally assume the 
presence of expllcltly specifled joint reference trajectories or 
desired virtual force calculatiaas that ignore system 
dynamics. Here we describe a practical controller that 1) 
simplifies control of abstrad variables such as the center of 
mass loentioo using a two-stage model-based plant 
Uoearization; 2) determines motion of non-contact limbs 
useful for achieving control targets while satisfying dynamic 
balance constraints; and 3) provides robustoess to modeling 
error using a sliding controller. The controller is tested with 
B morphologically redistic, 3-dimensiona1, 18 degree-of- 
freedom humanoid model serving as the plant. It is 
demou?trated that the controller can use less detailed control 
targets, and reject stronger distnrbancer, than previously 
implemented Controllers that employ desired Virtual forces 
and static body calculations. 

I. INTRODUCTTON 

The control of balance for bipedal humanoid robots has 
been studied extensively. In recent years, a number of 
humanoid robots capable of walking have been developed 
These include the Honda P3 and Asimo robots [5, 61, the 
Sony SDR [22], and Tokyo University’s H6 [lo]. These 
robots achieve balance control using a motion planner that 
generates reference joint trajectories, and by using simple 
PD controllers to track those desired trajectories. This 
approach results in stable walking as long as disturbances 
are not too large. 

Hi-fidelity dynamic simulations have been used for the 
study of bipedal balancing and locomotion. Hodgins [71 
developed a control algorithm for a simulated human 
runner that achieved a close match, in terms of motion 
trajectories, with real human motion capture data. As with 
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the previously discussed robots, this approach relied on 
closely tracking a set of reference trajectories, and 
robustness to disturbances was not addressed 

Advances in hybrid position and force conml[14] have 
addressed problems of robustness in the presence of 
disturbances and unstmctured environments. These 
include impedance control techniques applied to robotic 
arms [9], and a similar virtual model control algorithm 
applied to legged robots [15, 161. These algorithms fmt 
compute a desired “virtual” force at some “reactinn” point 
on a mechanism’s body, and then the required joint torques 
are computed to achieve that desired virtual force. The 
former computation is typically based on a seSpoint 
trajectory and virtual spring and damper elements that 
combine to implement simple feedback control laws. The 
latter computation is a Jacobian-based static force 
computation that has been used extensively in robot 
manipulators [2, 131. This type of algorithm has been 
extended to allow center of mass (COW to be a reaction 

Although the virtual model control algorithm has been 
applied successfully in the control of a number of legged 
robots, its usefulness for fast, dynamic motions is limited. 
The limitation of this approach is due to the fact that all 
computations are static in nature; the approach assumes 
that the entire mechanism’s system of articulated links is a 
rigid body. This assumption is reasonable for slow 
movements, or when the system is not moving at all. 
However, it breaks down with rapid movements where 
dynamic forces become more dominant. 

The problem of taking into account dynamics has been 
addressed using a variety of approaches. A technique 
called “dynamic fdtering” [IO, 121 involves adjusting an 
input set of joint trajectories so that dynamic balance 
constraints are satisfied. Tbe input trajectories must be 
specified at a relatively high level of detail, and they have 

point [18]. 

1952 0.780344034lOU$20.00 a2004 IEEE 

mailto:hofina@csail.mit.edu
mailto:sgm@csail.mit.edu
mailto:marko@media.mit.edu
mailto:bherr@media.mit.edu


to be close to a correct solution. Slotine [17] developed a 
sliding controller with feedback linearization for 
controlling robotic manipulators. For legged systems, 
Kondak [I 11 implemented a balance controller for simple 
bipedal mechanisms using feedback linearization. 
However, due to the simplicity of tbe model, the issue of 
non-contact limb movement was not addressed. In 
addition, control was in terms of joint state space ratber 
than more abstract outputs of interest, thus making it 
difficult to prioritize multiple goals. Finally, model error 
was not taken into account 

In this investigation, we descrih a novel control 
architecture for legged systems wbere the acceleration of 
non-cootact limbs is employed as a key stabilization 
strategy. We test the controller on a morphologically 
realistic humanoid model for the specific movement task of 
balancing on one leg. The controller incorporates feedback 
linearization, and quadratic programming-based optimal 
control, within a sliding control framework. The feedback 
linearization component decouples and linearizes the 
dynamics of the plant in terms of the reaction points to be 
controlled The optimal controller observes constraints 
such as joint ranges, maximum joint torques, and the 
restriction that the foot rotation index @‘RI) [4] be within 
the support polygon. The sliding control framework 
ensnres robustness, allowing for modeling inaccuracies. 

We test the humanoid controller using a variety of 
disturbed initial states, including both forward and lateral 
COM displacements, and we compare the performance of 
the controller to a previously developed control approach 
that does not take dynamics into account [16]. Finally, we 
study the resulting model behaviors by analyzing the 
dynamics ofthe system. 

II. CONTROLLER ARCHITECTURE 
Simulation experiments were performed using a 

morphologically realistic humanoid model described in the 
next section. Subsequent sections provide details of tbe 
humanoid control system. 

A. 3 0  Biped Model 
A model that captures the essential morphological 

features of the bnman lower body relevant for standing, 
balancing, and walking was developed [8]. The model is 
three-dimensional with 12 intemal (controlled) and 6 
extemal (un-controlled) degrees of kedom. The 12 
intemal degrees of fkedom correspond to joints that can 
exert torqnes. The 6 extemal degrees of freedom 
correspond to the position and orientation of the !nu& of 
the body. Each leg is modeled with a ball-and socket hip 
joint, a pin knee joint, and a saddle-type ankle joint. Here 
the saddle joint architecture allows for ankle 
plantaddorsiflexion motions and ankle inversiodeversion. 
The upper body (bead, arms and torso), upper leg and 
lower leg are modeled with cylindrical shapes, and the feet 
are modeled with rectangular blocks. The dimensions of 
each model segment were obtained by considering 
morpbological data that describe average human 
proportions [19,21, along with motion capture data [I, 201 

used to derive segment lengths, and tinally direct 
measurements on the test subject. 

B. P lmf  Linenrizafion 
The feedback linearization a r c h i t e m  of the controller 

is shown in Fig. 1. The purpose of the feedback 
linearization is to make the plant appear linear to the 
controller, f,, . 

1 

Y 

Fig. 1 -Feedback linearizatirm controller architectun 

The linearization is accomplished in two stages. First, 
the forward dynamics of the plant are linearized using an 
inverse dynamics model, resulting in an input-state 
linearized plant [17]. Thus, the plant is linear for a 
controller that selects desired joint accelerations. A 
second, geometric transform is used to convert from 
desired accelerations of the outputs (the reaction points) to 
desired joint accelerations. This transfomtion, indicated 
by ‘I-’ in fig. I ,  is a specialized inverse kinematics 
transform. 

Thus, using the above architecture, if we ignore joint 
and FRI constraints, the controller f,, sees the rest of the 
system as being completely linearized and decoupled. 
n u s ,  simple control techniques for SISO 2d-0rder linear 
systems @ole placement, for example) can be used within 
this controller. 

We now discuss some details of these linearizations. 
The input-state linearization of the plant using inverse 
dynamics is straightforward. The inverse dynamics for the 
plant are expressed in the following standard form: 

H(q)ii+C(q,il)il+g(q)=T (1) 

where is a vector of joint angles, 7 is a vector of joint 

torques (the control input to the plant), ~ ( q )  is a matrix 

of inertial terms, C(qtil) is a matrix of velocity-related 

terms, and g(q) is a vector of gravitational terms. 
Choosing eq. 1, (with 4 replaced by qder ) as the control 
law and substituting into the forward dynamics yields 

q=q* (2) 

Thus, the system is exactly linearized, and completely 
decoupled into a set of SE30 systems. Tbis technique is 
sometimes called “computed torque”, “inverse dynamics” 
or “feedforward” control in the robotics literature [13]. 

This linearization is relatively straightforward due to the 
structure of the plant dynamics. However, the problem is 
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not solved, because the goal is not specifically to control 
plant state, but rather, to control outputs derived from plant 
state. These outputs (COM, for example) are nonlinear 
functions of plant state, so a further transformation 
(indicated by Y-' in fig. I )  is needed. 

reaction points) are given by 
The plant outputs (desired positions and orientations of 

Y = (3) 

where h is a forward kinematic transformation. Taking 
partial derivatives yields, for each output y, 

y .  =- (4) 

where j indicates the joint. Differentiating this again yields 

( 5 )  
I2 

It is useful, at this point, to use spatial notation [3] to 
represent spatial accelerations of reaction points. With this 
notation, the spatial acceleration of link i of an articulated 
mechanism is formulated as 

where Pi is the spatial acceleration vector, and i, is the 
Jacobian column for joint i. AU of these vectors are in 
global coordinates. The vector i, is the local axis vector, 

i, , for joint i transformed to global coordinates using the 

spatial transformation matrix : 
" 

- 
i, =o xis, (7) 

Note the similarity between eqs. 5 and 6. For any 
particular state of the mechanism, eq. 6 is a linear equation 
of the form 

i, =yq+yP,,", (8) 

where 'l' is the reaction point Jacobian 

Y =E1 i, ... 8 , ]  (9) 

and 

Thus, eq. 8 provides the linear relation between joint and 
reaction point accelerations required for the controller 
architecture shown in Fig. 1. 

There is one additional complexity. The angular 
acceleration given as part of the spatial acceleration vector 
in eq. 8 is an angular acceleration vector. This is suitable 
for situations where the desired angular velocity of the 
reaction point is specified using such a vector. Normally, 
however, this is not the case; desired angular acceleration 
is specified in terms of second derivatives of roll, pitch, and 
yaw angles (a.k.a. Euler angles). 

To convert to this form, consider first the angular 
velocity vector 0 .  This is related to first derivatives of 
roll, pitch, and yaw by 

-smc7 0 y 
O=[ ;  =;: o p j  l a  (11) 

where a is a rotation (of the reaction point) about the z 
(yaw) axis, p is a rotation about they @itch) axis, and y 
is a rotation about the x (roll) axis. The rotation 
convention used is rotation of p about the global (fixed) 
y axis, followed by rotation of y about the global x axis, 
followed by rotation of a about the global z axis [4]. 
Using eq. 11 and taking partial derivatives yields 

where 

c p =  

Note that for a particular system state, eq. 12 gives a 
linear relation between the angular acceleration vector, and 
the vector of second derivatives of Euler angles. 

E@. 8 can be used to find the spatial acceleration of any 
reaction point. If we choose the COM of each link in the 
mechanism as a reaction point, then the acceleration of the 
system COM, in the x, y. and z directions, is given by 

d2COM 1 ' d2COM 
dt2 m,, i=, dt2 

= - E m ,  (14) 

For the experiments described here, the following 12 
values were chosen as the outputs to be controlled (the 
elements of y in fig. 1): x and y COM position, body z 
position, body roll, pitch, and yaw angle, swing foot x, y. 
and z position, and swing foot roll, pitch, and yaw. These 
outputs were controlled using simple PD control laws in 
f,,, , with feedback gains manually tuned 
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C. Muliivariable Optimal Controller 
Using the linearization techniques described in the 

previous section, the system appears to be completely 
linearized and decoupled to the controller fcm, in fig. 1, 
but only if there are no constraints. Unfortunately, there 
are hounds on plant inputs due to saturation limits, and this 
complicates the problem. If the controller does not take 
these bounds into consideration, it could generate values to 
satisfy y, that cause the bounds to be violated. For 
example, if the controller does not take into account the 
fact that the foot support polygon is of finite sue, it might 
generate ankle toques that are too large, and that cause the 
foot to roll. The controller may be unable to satisfy the 
desired input while maintaining constraints. To avoid this 
type of infeasibility, slack variables are introduced for each 
element of y, , so that the new controller output is 

Y, = Y m - G % ,  +Y&k (15) 

This provides flexibility in that y, conforms to the 
controller’s linear PD control law (without regard to the 
actuation bounds), while y,, - oyt, the true output of the 
controller, does obey actuation bounds. The goal of the 
overall control system is then to “ i z e  y,,, , taking 
into account the relative importance of each output. Thus, 
it is important to decide which outputs are the “important” 
ones, and therefore need to be controlled most closely. The 
goal for the overall control system is then to make the slack 
variables be 0 for the impdrtant outputs, and relatively 
small for the others. 

The question now is how to formulate an optimization 
problem that minimizes the slack variables and obeys the 
actuation constraints. There are thee types of constraints: 
1) constraints on joint angle positions, 2) consmints on 
joint torques, and 3) constraints that keep the FRI within 
the support polygon. The FRI is the point on the 
foot/ground cootact surface where the net ground reaction 
force would have to act to keep the foot stationary [4]. 
When in a single-support stance, if the FRI is outside the 
bounds of the actual support polygon, the support foot will 
begin to roll. Thus, keeping the FRI within these bounds 
amounts to limiting ankle torques of the stance leg so that 
the stance foot does not roll. The FRI is given by 

i m,RPx, ( R E j  + g )- i mjRPzjRpjl, - t Hyj 

C m, (R+ + g) 
F H  = f=Z id i=2 

7 

,=I 

(16) 

km,mj(RPi; + g ) - ~ m , ~ q ~ j  +k~.i# 
FRI, = is i=2 

t“, i=t + g )  

HGj = I G j  6; 

where 6.1j is the angular acceleration vector of link i, in 
global coordinates. 

Fortunately, all bounds can be expressed using linear 
inequality constraints. Since the equality constraints used 
fa the linearization described in the previous section are 
all linear, it is possible to formulate the optimization 
problem as a quadratic program. The variables (columns) 
of this formulation are as follows: yS,& (the slack 
variables), yco,,-oM (the specified acceleration output by 

the controller to the linearized plant), q,,(the joint 
accelerations), R P i ,  Rpji, RPZ (the COM reaction 
point x, y, and z accelerations for eacb li), hx and hy 
(the x and y components of angular acceleration of eacb 
link), and T (the joint toques). Linear equality consb’aints 
of the quadratic programming formulation are as follows. 
Eq. 15 relates y,,, and y,,,_, through y, ,which is 
determined outside the quadratic programming 
optimization, based on simple PD control laws that take y 
and y, as input. Eqs. 8 and 12 relate q, to ymn,-m,, 

and to RPX , W, mz, cbx, and hy . Eq. 1 relates 

q, t o T .  

Linear in-quality constraints of the formulation 
represent the bounds on joint angle positions, joint toques, 
and FRI. Bounds on FRI are represented using eq. 16. 
Bounds on joint torques are represented simply as bounds 
on the T variables in the quadratic program Bounds on 
joint angle position are translated to bounds on joint 
angular accelerations which are set as bounds on the qdu 
variables. 

A quadratic cost function is used with costs assigned to 
the slack variables and also the joint torques. Slack costs 
for “important” outputs are higher than for the other 
outputs. In these experiments, the important outputs are 
COhfx and COMy. These outputs also have 
correspondingly higher PD gains. 

D. Sliding Control Framework 
Feedback linearization is a powerful technique, but it 

can be insufficient for real plants because it assumes a 
perfect plant model. The sliding control algorithm 1171 
addresses this problem using a two-part structure. The first 
part is the nominal part; it assumes the model is perfect, 
and issues control commands using a feedback 
linearization based on this model. The second part 
contains additional corrective control terms that 
compensate for model inaccuracy. 

For this problem, the nominal or feed-forward control 
input to the plant is T , the joint torque vector output by the 
inverse dynamics block m Fig. 1. The corrective control 
terms are feedback torques, TP, which are combined with 
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the feed-forward toques to get the new, combined plant 
input torque TPlm,. 

Tpimr = 7 + T p  (17) 

Note that the corrective control terms must be applied 
directly to the torques, the aciual inputs to the plant. Thus, 
these terms bypass the kinematic and inverse dynamics 
models , and any associated inaccuracies in these models 
(see Fig. 1). For this study, the inverse dynamics block in 
Fig. 1 used a slightly simplified model compared with the 
one used in the forward dynamics plant simulation, so 
some model inaccuracies were introduced, just as would be 
the case with an actual plant. The corrective terms are of 
the form 

T~ =-li-ksgn(s) (18) 

where 
between the actual and nominal joint angles 

is the tracking error, defined as the difference 

G = 9 -9" 

and q,,,, is computed by integrating &,in Fig. 1. 
The constants in the diagonal matrix lcontrol 
convergence while on the sliding surface. The vectors is 
the distance fiom the sliding surface, defined as 

The constants in the diagonal matrix k a r e  made large 
enough to account for model uncertainty [17]. 

E. Sfalic Jacobian Conholler for Comparison 
In order to compare performance of the controller with 

that of previous approaches, a second controller, based on 
static Jacobian linearizations [15, 161 was implemented. 
This controller had the same outputs as the new one, and 
setpoints and PD gains for each output were specified in 
the same way. A wide range of gain combinations was 
explored by manual tuoing to optimize periormance. For 
example, proportional (spring) gain for lateral components 
of COM ranged fiom 100 to loo0 N/m. Damping gains 
ranged f" 0.1 to 1 times the proportional gains. 

In. RESULTS 

A series of tests was performed with initial conditions 
such that the ground projection of the COM was outside 
the support polygon, and all velocities were set to zero. 
For such initial conditions, the COM cannot be stabilized 
by stance d e  toques alone without the foot rolling and 
the model going unstable. Simple reference trajectories 
consisting of single, time invariant setpoints were selected 
for the controller. These setpoints specified the desired 
equilibrium positions and velocities of the model's COM 
and swing leg foot. Because the desired final equilibrium 
posture was to stand on one leg assuming a static pose, all 
setpoint velocities were set to zero. 

Fig. 2 shows the system's recovery from an initial 
displacement in the lateral (positive y) direction.. From the 
model's perspective, the le8 most edge of the foot support 
polygon is at 0.051~ As is shown in Fig. 2B, the FRI 
remains within the foot support polygon, while the laterally 
displaced COM position begins outside the stance foot, but 
is brought quickly to zero by the controller. Fig. 2C shows 
the desired, actual, and slack values for the lateral COM 
acceleration. Note how the slack goes to zero quickly, due 
to its high penalty. Fig. 2D shows the roll angle of the 
body. Because roll angle is less tightly controlled, the 
angle converges, but more slowly than the lateral COM 
position. 

Fig. 3 shows the system's recovery from a forward 
initial displacement. The fiont most edge of the foot 
support polygon is at 0.22 m. As is shown in Fig. 38, the 
FRI remains within the foot support polygon, while the 
forward COM position begins outside the foot, but is 
brought quickly to zero by the controller. Fig. 3C shows 
the desired, actual, and slack values for forward COM 
acceleration. Note how the slack goes to zero quickly, due 
to its high penalty. Fig. 3D shows the pitch angle of the 
body. Pitch converges, but more slowly than forward 
COM position because it is less tightly controlled 

Fig. 4 shows the system's recovery from a combined 
forward and lateral displacement, and Fig. 5 compares the 
performance of the sliding controller with that of a simpler 
controller that uses a static Jacobian linearization. As is 
shown in Fig. 5, the static Jacobian controller fails to 
stabilize the model from the same initial conditions 
outlined in Fig. 4; the forward COM output becomes 
unstable, and the model falls down. 

lV. DISCUSSION 
In this paper, we present a controller that employs 

acceleration of non-contact limbs and stance leg ankle 
torques as key stabilization strategies. Tbe controller 
incorporates feedback Linearization, and quadratic 
programming-based optimal control, widin a sliding 
control framework The feedback linearization component 
decouples and linearizes the plant dynamics, the optimal 
controller ensures that important constraints are observed, 
and the sliding control framework ensures robustness, 
allowing for modeling inaccuracies. 

The results show that the controller makes appropriate 
use of non-contact limbs and stance leg ankle torques to 
stahilize the system. The non-contact limbs are used in two 
ways: to shift the FRI, and to shifi the COM. Consider, 
for example, the numerical simulation experiment shown in 
Fig. 2. From the model's perspective, the model stands on 
its lefi foot, leaning to the lei? (positive y direction). If the 
controller were to take no action, it would tip further to the 
left and fall down. Due to the action of the controller, the 
upper body leans further to the left, and the swing leg 
swings out to the right. Both of these actions correspond, 
initially, to a negative angular acceleration about the x axis. 
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A A. 

E -0.2 

4 - o s o  d O m s  ss5. 

Fig. 2 Latnal d i s "  rscovcry. In 2A, ssvml frames of the model 
BTC &om, sming from the maximally displwd COM postun (lsfl m t  
image) to the k d  static equilibrium posture (right mast image). t b m  the 
pcrpsdve of the model, the right leg is the kg and the left the 
SI" kg In 28, the latwl dimtian COM (dodsd lins) and the FRI 
(solid We) are plotted v- time. In ZC, the desired COM aceelmtion 
(solid We), the actual COM aeeslmtion ( h e m  dashed line), and the 
slack value (dotred he) are plotuq shaving the stabilhtian of tbc 
model's COM. Finally in 2D body mll is plotted, showing the comaive 
me-s !&en by the mnholler. 

B. 

-0 1 I I 
0 1 2 3 4  5 

sec. . . 

D. 

*er 

Fig. 3: Fonvard disturbsnce rcwvv. In SA, wed frnmcs of the 
d l  an shown, starting b m  the m i m a U y  displaced COM poslw 
(lefl l M E 1  h g S )  to thc 6nal SqIlilibriUm PO* (right m D S 1  b g S ) .  
From thc pdpecfivs of the model, the dght leg is the mirg leg, leff is 
sfa~ce leg. In 38, the forward diredion COM (doffed line) and the FRI 
(solid he) m plotted. In 3C, the desired COM accclnatim (soEd line), 
the actual COM -lmIiioo (heavy dashed he), and the slack value 
(dotted line) me plottCq showing tbc slabihtion of the model's COM. 
Finally, in ZD, bady pitch is plotted 
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B. 
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sec. 

C. 

I 
0 1 2 3 4 5 

4.m 1 
*et. 

Fig. 4 Forward and lateral dirmrbance recovny. In 4 4  smd 

COM pshue (lefl most +e) to thc equilibrium poshus. In 4B, the 
fonward &don COM (dottsd line) and the FRI (solid line) an ploitcd 
4C shows lateral COM snd FRI. 

k S  of the d e l  me shown, s t u h g  from the mumally displaced 

0.5 

Fig. 5: Forward and la& dirmrbnncs m v q .  Trajwtmy fm 
f d  COM using eonmller based on static Jacobian linearization (solid 
line), and using conmUsr describsd hex (dated line). !itid conditicms 
me the s ~ m c  a8 those in Fig. 4. 

From equation (IQ, it is easy to see that this negative 
angular acceleration about the x axis allows a linear 
acceleration of the COM to the right (in the negative y 
direction) while not requiring the FRI to shifl further to the 
lefl (positive y direction). This is important since, as 
shown in Fig. 2, the FRI begins up against the lefl-most 

edge of the foot support polygon. As the COM approaches 
the desired position, the FRI moves away &om the edge 
and towards the center of the foot support polygon. At this 
point, the swing leg and body are able to return to their 
nominal neutral positions. 

The lateral acceleration of the swing leg to the right 
(negative y direction) is also beneficial in that it moves patt 
of the model's mass to the rigbt, and so, helps move the 
COM in the right direction. The net effect of the swing leg 
and body movements is an overall angular acceleration at 
the ankle joint that, together with the action of the stance 
ankle torque, moves the COM back to the center of the foot 
support polygon. 

The extreme case of nonantact limb movement 
occurs when the support polygon becomes very small, as is 
the case for a tight-rope walker. A tight-rope walker's 
support polygon is very narrow, and therefore, little stance 
ankle torque can be exerted. Laterat forces by the foot 
against the tight-rope move the COM, hut also create 
torques of the COM about the contact point This must he 
wuntered by spin angular accelerations (angular 
accelerations about the COM), so that overall angular 
momentum is conserved The spin angular accelerations 
are generated by movement of the non-contact limbs. 
Thus, a tight-rope walker extends his arms, and moves his 
arms, body, and nonantact leg to generate appropriate 
spin an- accelerations. 

An important feature of the controller is that the 
coordinated behavior of the stance leg and nonantact 
limbs is not controlled explicitly, but rather, emerges 
indirectly fiom a high-level specification of desired 
behavior. This specification is given in terms of setpoints 
and PD gains for the COM, body orientation, and swing leg 
wntrol outputs, in terms of constraints such as the one on 
the FRI (equation 16), and in terms ofpenalties for slacks 
and torques in the optimization cost function. 

Another important feature of the conmller is that, due 
to its extended range of operation, it can reject significant 
disturbances more easily than simpler wntrollers (as shown 
in Fig. 5). This feature also means that reference 
trajectories for the new controller need not be as detailed as 
those for simpler controllers. The reference "trajectories" 
for the tests of Figs. 2 through 5 were single, time invariant 
setpoints for COM, body orientation, and swing leg 
outputs. Simpler controllers require more detailed 
reference trajectories, with more waypoints as a function of 
time. For example, the Static Jacobian controller that failed 
in the test of Fig. 5 could be made to work for this case if 
more detailed reference trajectories for staoce leg, swing 
leg, and body were provided However, this level of detail 
puts significant computational burden on the motion 
planning component of an integrated motion planning and 
control system. The motion planner has to be executed 
more frequently, when there are disturbances, and it must 
produce more detailed reference trajectories. 

Detailed evaluation of the sliding control hmework's 
ability to handle model uncertainty was beyond the scope 
of this investigation. We plan to perform such an 
evaluation by testing the algorithm on simulations where 
model errors are introduced. and on actual robots. 
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Additionally, it would be interesting to investigate tbe 
extent to which this framework allows for use of simplified 
dynamics models, where some of the terms in equation (1) 
are simplified or omitted. 

In the future, we plan to conduct a series of tests using 
human subjects, where the COM of the subject is initially 
displaced in a manner similar to that for the above- 
described tests. We will analyze the stabilizing motions of 
these subjects and compare them with those of the 
controller. We expect that this will be useful for h e -  
tuning tbe controller’s PD gains and slack variable costs. 
We also plan to combine this wnhvller with a fully 
integrated motion planniog system, and evaluate its 
performance for more complex maneuvers such as walking 
and running. 

REFERENCES 

[I] AMTI OR6-5 Biomschanics Platform$ hm: / /wm liweb.com 
[2] Craig, 1. I., (1989) “Introduction to Robotics: Mechanics and 

Conmrl”, Rcadiag, Massachuscm Addison-Wesley, pp. I52 - 180 
131 Feathmtons, R, 1987, “Robot Dynamic AlgodthmJ”, Bonos 

Masschusetts, Kit" Academic Publisbm, pp. 155 - 172 
[4] Goswami, A., 1999, “Poshwl stability of biped mbots and the foot 

m t i m  indicator (FRO point”, lnl-tiod J o d  of Robotics 
Research, IulyIAuwt 

[SI Himi K., 195’7, “Cumnt and Fuhur Psrspccdve of Honda 
Humanoid Robo1”Fmcedings of the 1997LZEER.!JlnImationol 
Confmmce on Inlelligen: Robot and S p l m  Orsnobk, 
FranrdEEE, New York, NY, USA. pp. 500-508. 

[6] W K, Hirose, M., H&w Y. and Takaaka T., 1998, ‘The 
Dsvclopmmt of Honh Humaooid Rob?‘ IEEE Internorional 
Confmnce on Robolio ond Auromlion Law- Bclgium:IEEE, 
NcarYohNY. USA.pp. 1321-1326. 

[‘/I Hod+. I. K, 1996, ‘The-Dimensiod Human Running”, 
Roeccdings ofthe IEEE Canfmnce on Robotics and Automation. 

[8] Hofmano, A G., Popvic, M. B., and Hem, H. (2002) “ H w o i d  
Standing Control Leming h m  HI” Demonstration’’, Joumal 
ofAutoma6cCOntrol 12(1),pp. 16-22 

[91 Hogan, N. ‘(1985) “Impedance Cmml An Appmash to 
Manipulation - Pa=l I: Theof ,  loumal of Dynamic Sysfcms, 
Meamuemmt,andGntroL 1071-7 

[IO] Kagami, S., Kaneltim, F., Tamiya, Y., Inaba, M., Inous, H., 2001, 
“AutoBalancer: An online Oynamic Balance CDmpnsation 
Scheme for Humanoid Robob”, in “Robotics: The Algorithmic 
P-tivc”, Donald, B. R, Lynch, K M., and Rus, D., editors. A 
K Petm Ltd pp. 329 - 340 

[I I ]  Ken& R, Hommel G., 2003, “Conh.01 and Online Computstion 
of Stable Movsment for Biped Robots”, Pm. I n t m d i o d  
Confireme on Idelligml Robob o n d s e m r  (IROS) 

[I21 K&m, I., Kagami, S, Nishiwald, K, hb.% M., Inouc, H., 2002, 
‘ ~ a m i c d l y s t s b l c  Motion Planning for Humaooid Rabob”, 
Auto~omousRobotsvol. I2,No. I,pp. 105- 118 

[I31 Paul, R P., 1981, “Robot Manipulators”, Cambridge, 
MwwhwMls: The MIT Pres 

[I41 Ratf G., Williamroq M., 1995, “Serier Ehstic Actukm”, IEEE 
Intrrnitiod Confewce on lntclligmt Robots and Systems, pp 
1:399406 

ConUoY Rm. Iulemtioml Conferotes 00 Inlelligml Roborr and 
[IS] h n ,  I., TOITCS. A., mworih, P., hn, G., 1996, ‘~ i rma l  ~ ~ t ~ t o r  

[I61 pratt, I., Dilwod, P., hn,’G., 1997, -virhlal conmlofa 
*dem (IROS) 

Bipedal Walldng Rob?‘, Pme. Intemtionol Confeeme on 
Robotia mdAutomntion OCRA) 

[I71 Slotine, I., Li, W. , 1990. “Applicd Nonlinear Control’: Rmticc 
Hall 

[IS] Sugihara, T., N h q  Y., lnous, H., “Realtime H m o i d  
Motinn Gmaatic.0 through ZMP Maoipulatim b a d  on InveAd 
P a d d m  Control”, 2002, Pmc. I n ~ e m t i o n d  Conference on 
Robatim mdAuto&on 

[I91 Tilley, A. R., and Drryfuss, H. (1993) ‘7hs masun of man and 
WO-’’ Whhimey Libra? of Design, an imprint of Warson-OUpiU 
Publications, New York 

[ZO] Vicon Motion Systsms, htm://m.viconmm 
[ZI] Winters, D. A. (1990) ‘Vionechonicr andMotor ConmlofIfumnan 

Movement,” John Wilsy & Sons, Inc., New York 
[22] Yamaguchi, I., Saga, E., Inoue, S., Takanishi, A, 1999, 

“Devslopmml of B Bipedd Humanoid Robot Xontrol Method of 
Whole Body C o o p t i v c  Oynamic Biped Wdkhg”. ICR4 ’99. 
lEEE,pp. 368 -314 

1959 

http://liweb.com

