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Abstract

A new control strategy is used to stabilize numerical simulations
of a horse model in the trotting quadrupedal gait. Several well-
established experimental findings are predicted by the model, in-
cluding how stride frequency and stride length change with forward
running speed. Mass is distributed throughout the model’s legs,
trunk, and head in a realistic manner. Leg and trunk flexion is mod-
eled using four flexible legs, a back joint, and a neck joint. In the
control model, pitch stabilization is achieved without directly con-
trolling body pitch, but rather by controlling both the aerial time and
the foot speed of each stance leg. The legs behave as ideal springs
while in contact with the ground, enabling the model to rebound from
the ground with each trotting step. Numerical experiments are con-
ducted to test the model’s capacity to overcome a change in ground

impedance. Model stability is maximized and the metabolic cost of

trotting is minimized within a narrow range of leg stiffness where
trotting horses of similar body size have been observed to operate.
This work suggests that a horselike robot will exhibit behavior that
is mechanically similar to that of a trotting horse if it operates in a
narrow range of leg stiffness and employs simple control strategies
where postural stabilization is an emergent property of the system.

KEY WORDS—horse, trotting, control, stability, ground
impedance

1. Introduction

The investigation into quadrupedal locomotory control first
began in 1893 when Lewis A. Rygg patented a mechanical
horse (Rygg 1893). In his design, the horse stirrups were
replaced by bicycle pedals that could be used by the rider
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to power the stepping motions of walking. The pedals were
coupled to the limbs by a series of gears and linkages, such
that each turn of the pedal crank consistently produced the
same stepping motions. Rygg’s approach to the control of a
legged machine was not unlike other investigators of his time
(Lucas 1894). In fact, similar locomotory models and mech-
anisms were proposed well into the 20th century, but their
capacity to compensate for speed changes and environmen-
tal disturbances was poor (Nilson 1926; Ehrlich 1928; Kinch
1928; Snell 1947; Urschel 1949; Corson 1958; Bair 1959;
Morrison 1968).

Beginning in the 1930s and continuing into the 1980s, re-
searchers became increasingly convinced that for legged ma-
chines to be as agile and stable as legged animals, they must
actively balance (Manter 1938; McGhee and Kuhner 1969;
Frank 1970; Vukobratovic and Stepaneko 1972; Vukobratovic
1973; Gubina, Hemami, and McGhee 1974; Miura and Shi-
moyama 1980, 1984; Raibert 1985, 1986, 1990). Researchers
believed that the fixed limb trajectories found in mechanisms
of the past were the primary cause of their dysfunction and that
feedback control should be used to balance a legged machine
over its feet, similar to how a person balances a broom stick on
the end of his or her finger. This view of legged control was so
pervasive in the scientific community that the inverted pendu-
lum model in walking became the primary tool for studying
balance in legged locomotion (Miura and Shimoyama 1984;
Vukobratovic and Stepaneko 1972; Vukobratovic 1973).

Marc Raibert and colleagues at MIT developed light and
fast robots using the active balance approach to legged ma-
chine control (Raibert 1985, 1986, 1990). They built several
robots, from a monopod to a quadruped, that could hop, run,
jump, and flip. All the machines kept their balance actively;
during ground contact, a gyroscope was used to measure er-
rors in body posture, and then torques were applied about the
joints to correct for the errors.
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In the late 1980s, Tad McGeer questioned the active bal-
ance paradigm as a control scheme for legged locomotion.
He argued that legged machines should be designed with
structures that are naturally stable, not requiring feedback
of body posture during ground contact to balance (McGeer
1989, 1990). He built a passive robot that could walk down
slopes driven by the force of gravity while balancing on curved
feet shaped like the base of a rocking chair. After McGeer’s
work, Robert Ringrose built a hopping monopod robot that
could bounce repeatedly in a stable limit cycle without rely-
ing on sensory input of posture to balance (Ringrose 1997).
However, similar to McGeer’s walking robot, the monopod’s
stability depended on the shape of its foot. Ringrose used a
curved foot roughly the shape of a hemisphere. If the foot
was made too flat or too small, the robot would fall over.
Ringrose went on to show in simulation experiments that
bipeds and quadrupeds could also use feet shaped like hemi-
spheres to run, trot, and gallop without sensory input from the
environment.

The legged machines described thus far, although func-
tional in some sense, were not designed to resemble the shapes
and motions of rcal animals. Raibert’s quadrupedal robot did
notinclude a head or aneck, or even a joint for the back to flex
(Raibert 1985, 1986, 1990). Mechanically, the robot bounced
a great deal during a trot, resulting in peak leg strains nearly
twice as large as the strains measured in trotting animals of
similar size and speed (Raibert 1986; Farley, Glasheen, and
McMahon 1993).! The robots of McGeer and Ringrose, al-
though compelling from an engineering perspective, are diffi-
cult to interpret as biological models simply because animals
do not have large hemispherical feet or curved rocker feet.
Many mammals run on their toes, not relying on a foot of any
kind to maintain their balance (Biewener 1989; Roberts et al.
1997).

Do animals remain balanced while trotting by actively con-
trolling body posture throughout ground contact, or are they
naturally stable because of an inherently stable body shape?
The purpose of this work is to begin to understand what control
mechanisms quadrupeds use to maintain their speed, height,
and balance while trotting. A goal for this paper is to develop
ancw theory of quadrupedal locomotory control and to use the
theory to stabilize numerical simulations of a trotting horse
model.  We hypothesize that for robots to exhibit behavior
that is mechanically similar to that of trotting horses, actively
controlling body posture during stance is not necessary, not
because of foot shape, but because of simple control strate-
gies for which postural stabilization is an emergent property
of the system. To test the hypothesis, a horse model is con-
structed using body segment lengths and mass distributions
measured from a horse. Control strategies are then formulated

1. Data from a trotting dog (23.6 Kg) was used from Farley, Glasheen, and
McMahon (1993) to compute a peak leg strain of 14%. In contrast, Raibert’s
quadrupedal machine (25.2 Kg) bounced in trotting with leg strains around
25% (Ratbert 19806).
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using limb kinematic and force data from trotting animals.
Quantitative predictions made by the model are compared to
mechanical and energetic data from trotting horses.

2. Methods

2.1. Horse Model Structure

A considerable amount of mechanical and energetic data have
been collected on small horses with a total body mass between
130 and 140 Kg (Alexander 1977; Hoyt and Taylor 1981;
Heglund and Taylor 1988; Farley, Glasheen, and McMahon
1993). To construct the model proposed in this paper, mor-
phological data were used from horses close to this size range,
so that sufficient experimental evidence regarding horse dy-
namics and energetics would be available to test model pre-
dictions. Thus, a horse weighing 135 Kg with a mean leg
length of 0.75 m served as a template for the model. These
horse data were reported in Farley, Glasheen, and McMahon
(1993) where high-speed video (200 frames/second, 16-mm
video camera) was used to compute the leg length by tak-
ing the average of the forelimb and hindlimb lengths at first
contact in trotting. They measured the forelimb length as the
distance from the foot to a point midway between the greater
tubercle and the dorsal aspect of the scapula, and the hindlimb
length as the distance from the foot to the greater trochanter
of the femur.

The horse model, shown in Figure 1, was formed by a series
of rigid bodies connected by joints. Motions were confined to
the saggital plane. Yaw and roll body motions were ignored.
Each leg was constructed with an upper segment and a lower
segment connected by a telescoping joint that allowed for
sliding movement between the segments. Shoulders and hips
were formed using pin joints, enabling each limb to retract
and protract in the saggital plane.? Three separate segments
were used for the rump, body, and neck/head, and back and
neck pin joints were included to model trunk and neck flexion
introtting. The back joint was placed halfway between the tail
basc and the distal aspect of the rib cage where spinc flexion
is the greatest (Alexander 1985).

Mass was distributed between the legs, body, neck, and
head in a realistic manner using morphological data from the
literature (Fedak, Heglund, and Taylor 1982). This data set
included the masses and moments of inertia of various body
segments for a horse of total mass 98.9 Kg. To scale the mass
segments from the smaller to the larger horse, it was assumed
that corresponding body segments were the same fraction of
total body mass.

2. Unfortunately, there is no accepted convention to describe the motions of
the vertebrate limb as a whole. To avoid confusion, the convention proposed
by Gray (1968) will be adopted throughout this paper. Any backward dis-
placement of the foot toward the quadruped’s rump, by means of rotating a
limb about the hip or shoulder joint within the sagittal plane, will be referred
to as limb retraction. Any forward foot displacement toward the quadruped’s
head will be described as limb protraction.
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Fig. 1. The horse model used for the study is shown with the
various leg, neck, and back joints noted. There are a total of
10 degrees of freedom, two per leg as well as a back joint and
aneck joint. Telescoping joints at the knees and elbows allow
the leg lengths to change. At the distal end of each leg is a
single ground contact point. The ground is modeled as a field
of linear springs and dampers that compress when the trotting
model strikes the ground.

Joint locations and segment lengths were measured from
the horse photographs of Muybridge (1979). The back flexion
point, the shoulder to hip distance, the neck/head lengths,
the shoulder to elbow distance, and the hip to knee distance
were all measured from the images and normalized to leg
length.? These dimensionless sagittal-plane lengths were then
multiplied by the animal’s leg length. The lateral thicknesses
of the trunk, neck, and limbs were computed using the mass
of each segment, the sagittal plane lengths, and the volume
tormula for each segment shape.

The ground was represented with linear springs and
dampers in the vertical and horizontal directions to model the
viscoelastic properties of a natural running surface. Ground
stiffness was first set so that the limbs only penetrated the
ground by a small amount when running (~ 0.3 cm). Increas-
ing damping from zero then minimized oscillations between
the ground and foot.

A compliant ground was required so that each model foot
would not slip at first ground contact. The vertically aligned
ground springs allowed each foot to penetrate the running sur-
face, enabling the horizontal ground springs to hold the foot
in place. The effect of ground impedance on model stability
is discussed in Scction 2.4 of the Methods section.

3. The back flexion point was measured by estimating the midway point
between the tail base and the distal aspect of the rib cage. The shoulder-to-
hip distance was measured from a point midway between the greater tubercle
and the dorsal aspect of the scapula, and the greater trochanter of the femur.
The distance from the elbow to the shoulder point and the distance from the
knee to the hip point were also measured from the photograph.
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2.2. Justification of the Control Methods

Trotting is typically described as an alternate gait in which
a given pair of diagonal limbs (e.g., left fore and right hind)
supports the body in every other contact period. Trotting is
also described as a synchronous gait because a forelimb and
its diagonal hindlimb are said to strike the ground at the same
time. However, this is not always the case. When high-speed
films of trotting are examined, it becomes apparent that some-
times the forelimb strikes the ground before the hindlimb, and
at other times the hindlimb strikes the ground before the fore-
limb. This behavior is shown in Figure 2. The limb angles of
a small trotting dog are plotted showing the forelimb striking
the ground before the hindlimb. Figure 2 also shows that when
the forelimb begins to retract, the hindlimb begins to retract
even though the hindlimb is not in contact with the ground.
Hence, both diagonal limbs begin retraction at the same time,
and a limb sometimes begins to retract even before striking
the ground.

Does the mechanical state of the animal trigger the retract-
ing limb movement, or is the movement triggered by a clock
or central pattern generator? It is unlikely that limb retraction
begins when the first limb strikes the ground, since the time
delay between detection of ground contact and the initiation of
muscle force would cause the limb that is not in contact with
the ground to begin retraction after its on-ground limb part-
ner. If both limbs did not retract at the same time, the limbs
would be nonparallel or skewed throughout stance, which is
not what is observed (see Fig. 2).

An important hypothesis of the control model is that a trot-
ting animal estimates when its limbs will first strike the ground
using force and pitch information gathered during a previous
stance period. This estimated time is then used to define when
the limbs should first retract. The manner in which the time
of retraction is computed is discussed in Section 2.3 of the
Methods section.

Once an animal has made contact with the ground, how
do the limbs, back, and neck respond? In 1977, Cavagna,
Heglund, and Taylor discovered that in running, fluctuations
in the forward Kinetic energy of the center of mass are in
phase with changes in the gravitational potential energy dur-
ing ground contact. They hypothesized that animals most
likely store elastic strain energy in tendon, ligament, and per-
haps cven bonc to reduce fluctuations of total mechanical cn-
ergy during a running step. In 1997, Roberts et al. found
experimental evidence supporting that hypothesis. With di-
rect measurements of force and length in a prominent ankle
extensor of a running turkey, they showed that most of the
length change during stance occurred in the tendon, not in the
muscle fibers.

The idea that a vertebrate limb behaves like a spring dur-
ing ground contact is an important feature in the McMahon
and Cheng model that describes the mechanics of symmet-
ric running gaits such as quadrupedal trotting and bipedal
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Fig. 2. The limb angles of'a small trotting dog (5 Kg) are plot-
ted against the percentage time between when the forelimb
first makes contact with the ground and when the diagonal
hindlimb makes contact. The circles correspond to the fore-
limb angle with respect to the vertical, and the triangles to the
hindlimb angle. At 0% time, the forelimb first makes contact
with the ground, but the hindlimb still has not made contact
even though the fore- and hindlimb angles are the same. This
is the situation in the left-hand drawing of the trotting dog. In
the middle drawing at 50%, the same situation exists, except
the aerial hindlimb has retracted toward the ground. Finally,
at 100%, both legs are on the ground as shown in the right-
hand drawing. The limb angles were measured using a video
camera operating at a rate of 30 frames/second.
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running (McMahon and Cheng 1990). The model predicts
limb excursion angle and stride length by representing a limb
asasimple spring. Similartothe McMahon and Cheng model,
the horse model of this study uses efficient back, neck, and
leg springs to rebound from the ground during each running
step.

If the limbs of a quadruped behave like passive springs,
where does the energy come from to sustain forward mo-
mentum in running?* A comparison of the musculature of
quadrupedal hindlimbs and forelimbs provides some insight
into this question. The preponderance of muscle mass in the
hindlimb is positioned about the hip joint, acting to retract the
hindlimb and to power a running step (Gray 1968). In distinc-
tion, a large fraction of forelimb muscle mass is positioned
to protract the forelimb and to retard a running step. In Fig-
ure 3, hip and shoulder torques calculated using force-plate
and video measurements applied to a small trotting dog are
plotted against percentage contact time (Roberts 1997). The
results show that the hip generally applies a thrusting torque
and the shoulder a braking torque during contact in this trot-
ting animal. A hypothesis in the trotting controller advanced
here is that even in constant-speed running, hip torques act
as the engine of quadrupedal trotting and shoulder torques as
the brake.

2.3. Formulation of the Control Model

The control methods that dictate the motions and stiffnesses
of the model’s limbs in trotting may be summarized with a
few simple rules. Although simple, the methods nonetheless
lead to a robust stability and an overall model behavior consis-
tent with what is known about the mechanics of quadrupedal
trotting.

In Figure 4, the control strategy for trotting is explained
using a series of model images at various stages in a running
sequence. During the aerial phase of trotting, shown in Fig-
ures 4a and 4b, the controller positions the hip, shoulder, back,
and neck to desired angular positions relative to the model’s
trunk. The leg lengths of a protracted limb pair are brought to
full leg extension for landing, and the leg lengths of a retracted
pair are shortened by a fixed amount to achieve foot clearance.
The controller also computes when the limbs will contact the
ground, given force and pitch information gathered during a
previous stance period. At this estimated time of contact, two
control commands are initiated. The controller switches to
linear springs in the back and neck, as well as in the knee and
elbow of the protracted limb pair. In addition, torques are

4. 1f a legged robot were constructed with only passive springs at its joints,
flat-level running could be sustained for only a short timc. Frictional losscs
would diminish the total mechanical energy of the robot with each running
step, causing a rapid decay in the machine’s forward speed and height. Even
without frictional losses, the robot’s actuators would have to perform mechan-
ical work to accelerate and decelerate the machine’s segments throughout a
running cycle. A complete discussion of model energetics is given in the
Discussion section.
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Fig. 3. The hip torque (circles) and shoulder torque (triangles)
are plotted against percentage contact time for a small 5 Kg
trotting dog. During ground contact, the muscles about the hip
thrust the animal forward (positive torque), but the muscles
about the shoulder generally retard forward motion (negative
torque). The torques were computed by multiplying the force
acting on a limb from the ground by the perpendicular distance
from the line of force to the approximate axis of rotation of a
joint. The ground reaction force was measured with a force
platform, and the moment arm was measured by digitizing
video records of the trotting dog. A 200 frames/second cine
camera (photosonics 1PL) and a strain gauge force platform
(model OR6-5-1, Advanced Mechanical Technology, New-
ton, MA) were used in the study. All animal points were
calculated from experimental results given by Roberts (1997).

applied about the hip and shoulder of the protracted limbs to
sustain the tangential velocity component of each foot mea-
sured relative to cach foot’s proximal hip or shoulder joint.
Throughout stance,’ this velocity control is then continued,
as is shown in Figures 4¢ and 4d, until each foot loses contact
with the ground.

In the aerial phase of trotting, conventional proportional-
derivative (PD) servos are used to position the hip, shoulder,
back, and neck joints to desired angular positions relative to
the model’s trunk. PD servos are also used to lengthen the
limbs for landing and to shorten the limbs for foot clearance.
To position a rotary pin joint, the PD servo takes the form

Torque = _Gp(ém —&) = Gy(Vm — V1), (1)

where G, and G, are position and velocity gains, and 6,,, and
6, are measured and target joint positions, and V,,, and V; are
measured and target joint velocities, respectively. To position
linear joints such as the knee or elbow, a force is applied to

S. Occasionally, a model foot “chatters™ or bounces momentarily oft the
eround. Regardless of whether foot chatter occurs or not, the same stance
control is initiated when a limb first contacts the ground in a protracted or
forward position.

the joint proportional to linear position and velocity. For all
the PD controllers, the target velocity is set to zero.

At the start of each aerial phase, the controller computes a
dclay time defined as the time separating the start of the aerial
phase to the start of limb retraction. Since limb retraction
should begin approximately when the model first strikes the
ground, the delay time is an estimate of how long the model
will remain in the air, or

Gv - R
Tdelay = TI + G2(aprev —a), (2

where G| and G are gains, v is the vertical take-off velocity
of the model’s center of mass measured at the beginning of the
aerial phase, g is the gravitational constant, and d ¢, —a is the
difference between the body pitch measured at the beginning
of a previous aerial phase and the body pitch measured at the
beginning of the current aerial phase. If G| is equal to two,
the first term on the right-hand side of eq. (2) is an estimate of
the aerial time for a ballistic point mass moving in a uniform
gravitational field with a starting vertical velocity equal to v.
The second term on the right-hand side of eq. (2) modifies the
ballistic estimate of aerial time when model pitch is changing
from one trotting step to the next. For example, if body pitch
is gradually increasing, the aerial time or delay time will be
reduced from the ballistic point mass estimate by an amount
proportional to the difference in pitch from one step to the
next.

The vertical take-off velocity, v, in eq. (2) is computed by
integrating the total vertical force, F,, acting on the model’s
legs during ground contact, or

1/ [ Fodt
v = 5<L”_ _ g,c)’ (3)
m

where m is the total body mass and 7, is the amount of time
the limbs are in contact with the ground.

To control forward running speed, torques are applied
about the hip and shoulder such that the tangential veloc-
ity component of each foot, measured relative to each foot’s
proximal hip or shoulder joint, is sustained. Foot velocity is
computed by multiplying the leg length, /, by the angular ve-
locity of the proximal hip or shoulder joint measured relative
to the trunk, e, or

Viang = 1é. ()

The applied torque is then proportional to the difference be-
tween a measured tangential velocity component and a target
velocity, or

Torque = —Gy(Viang — Viarge)- (5)

The proportionality constant, G, is a velocity gain defining
the torque response to a given velocity error.
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Fig. 4. The horse model is sketched in a trotting sequence. In (a), when the legs are off the ground, the controller positions one
diagonal limb pair at a backward or retracted angle with respect to the trunk and the other pair at a forward or protracted angle.
The lengths of the protracted limbs are then positioned to full extension for landing, and the retracted pair are shortened to fixed
lengths for foot clearance. The back and neck joints are positioned to desired angular positions in preparation for landing. At
the beginning of the aerial phase, the controller also computes when the limbs will contact the ground, given force and pitch
information gathered during a previous stance period. At this estimated time of contact, two control commands are initiated.
First, the knee and elbow joints of the protracted limbs, as well as the back and neck joints, are stiffened in preparation for
ground contact. Second, the controller exerts torques about the protracted hip and shoulder joints to sustain the tangential
velocity component of cach toot measured relative to each foot’s proximal hip or shoulder joint. The velocity control then
continues throughout stance, here sketched in (c) and (d). The tangential velocity component of each foot is computed by
multiplying the leg length by the angular velocity of the proximal hip or shoulder joint measured relative to the trunk. The
applied torque is proportional to the difference between the measured tangential velocity and a target velocity. When the target
hindlimb velocity is greater than the forward running velocity, and the target forelimb velocity is less, a thrusting torque is
applied about the hip and a braking torque about the shoulder as is shown in (c) and (d). This braking and thrusting behavior
keeps the body pitch level during stance. When the model is in contact with the ground, linear springs act at the knee, elbow,
neck, and back, enabling the model to rebound from the ground with each step.
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When the forelimb target velocity is smaller than the for-
ward velocity of the trotting model and the hindlimb target
velocity is greater, the shoulder generally applies a braking
torque during stance and the hip a thrusting torque similar to
the trotting dog of Figure 3. This thrusting and braking be-
havior increases model stability by decreasing angular fluc-
tuations in body pitch throughout stance. A full discussion
of pitch control can be found in the Discussion section of this

paper.

2.4. Simulation Experiments

Given the large number of degrees of freedom in the horse
model, and the nonlinear nature of quadrupedal trotting, com-
plete analytical solutions were not practical in this study. In-
stead, physically realistic computer simulations were used to
study the forces and motions of trotting. The simulations
obeyed the laws of Newtonian physics as applied to trees of
rigid bodies coupled together by joints.

A commercially available modeling package called SD-
Fast (Rosenthal and Sherman 1986) produced the simulation
dynamics by generating the equations of motion and then solv-
ing them numerically using a fourth-order Runge-Kutta inte-
gration method. The equations were integrated forward at a
fixed time step of 0.4 ms, while another program called Crea-
ture Library communicated with the controller and SD-Fast to
determine the forces and torques commanded to the model’s
joints. Animation packages within the Creature Library made
it possible not only to analyze the simulation results numer-
ically but also to see them visually. This enabled the horse
modecl to be tested not only on the basis of its predictive capa-
bility but also on how visually realistic the trotting simulations
seemed.

The horse model was constrained to move in the sagittal
planc during all numerical experiments. In this study, anal-
ysis was not performed to determine whether trotting was
the better gait, by any criterion, at a particular running speed.
Rather, published observations of animal velocities were used
to define the full velocity range of trotting (Heglund and Tay-
lor 1988). Four trotting velocities were examined, ranging
from a slow trot at 2.1 meters/second to a fast trot at 4.4
meters/second.

2.4.1. Stability

The first task in numerical simulation was to find a stable
trotting simulation at the lowest trotting speed, or 2.1 me-
ters/second. This was accomplished by manually adjusting
(1) positions and velocities that describe the initial state of
the model; (2) the back, neck, and leg contact stiffnesses;
(3) the position and velocity gains; and (4) the target posi-
tions and velocities. It was discovered that when the contact
limbs were very compliant, with peak leg strains at mid-stance
around 40%, the model’s stability was very sensitive to the

initial conditions of the simulation. When the sum of fore-
and hindlimb stiffness was increased, this sensitivity to initial
conditions disappeared. The ratio of forelimb to hindlimb
stiffness was adjusted such that both limbs compressed by
the same amount at mid-stance when both the pitch and pitch
velocity were zero at first ground contact.

Stable trotting was found at 2.1 meters/second using a total
leg stiffness, kjeg, equal to 24 kN/meter. Leg stiffness, kieg,
is defined in the appendix, eq. (A.1). Once a stable trotting
simulation was achieved, parameters were further adjusted to
minimize the mechanical work necessary to stabilize the trot-
ting simulation during each running cycle. When the neck was
made very stiff, the head would go through multiple oscilla-
tions during a single stance period, destabilizing the trotting
motions. To correct this problem, neck stiffness was low-
ered until only a single neck oscillation would occur during
each stance period. The same criterion was used to define the
stiffness of the back during stance. The aerial position and
velocity gains were also adjusted. The gains were lowered
until the time required to position each joint was equal to the
aerial phase time, and each limb moved to its target position
with zero overshoot.

The aerial PD servo position and velocity gains and the
back and neck contact stiffnesses, once defined at the low-
est trotting speed, were not adjusted across the entire span
of trotting from 2.1 meters/second to 4.4 meters/second. To
find stability at different speeds, only the limb excursion an-
gle at first ground contact and the fore- and hindlimb target
velocities had to be adjusted at a given limb stiffness.

The effect of contact leg stiffness on model stability was
examined after stable simulations were found at the four trot-
ting speeds. Is there a critical leg stiffness range where model
stability is maximized in trotting? To answer this question,
the total limb stiffness, or kjeg, was incrementally increased at
each speed while keeping the ratio of fore- and hindlimb stift-
ness constant. At each kjeg value, the limb excursion angle
at first ground contact was minimized, because it was discov-
ered that the smaller the limb angle, the smaller the vertical
oscillations of the model’s center of mass, and the lower the
peak leg strain during stance. Another consequence of choos-
ing the smallest angle was that the model’s vertical stiftness,
kver, was maximized. Vertical stiffness, kyert, 1s defined in
the appendix, eq. (A.2).

To measure the model’s capacity to overcome a change in
ground impedance, a numerical experiment was conducted
at each trotting speed, limb excursion angle, and total limb
stiffness, kjeg. In the experiment, ground impedance was re-
duced only after the model had been trotting on a stiff running
surface® in a stable limit cycle. Once reduced, ground stiff-
ness was not changed for the remaining time of simulation.
With a small change to ground impedance, the model quickly

6. As noted in Section 2.1 of the Methods section, maximum ground pene-
tration on the stiff surface was approximately 0.3 cm.
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Fig. 5. The vertical height of the model’s center of mass
measured from the undeflected ground surface is plotted
against time for a steady trot at 2.1 meters/second. The
stiffness of the running surface was reduced by 30% from 400
kN/meter to 280 kN/meter at 1.7 seconds (denoted by arrow)
at a point when the trotting model was off the ground. At
4 seconds, or three trotting cycles after the ground stiffness
had been reduced, the trotting model found a new stable limit
cycle. On the softer running surface, the model trotted with a
higher stride frequency compared to the more rigid surface.
After the ground disturbance, the simulation ran for another
20 trotting cycles without a significant change to maximum
acrial height, body pitch, or forward velocity (least-squares
regression, P < 0.05).

recovered from the disturbance. However, when ground
impedance was decreased beyond a critical level, the model
could not remain upright on the soft ground. In each experi-
ment, the model was considered successful in overcoming a
change in ground impedance if the model found a new stable
limit cycle’ on the softer running surface. An example of
how the model responded to a change in ground impedance
is shown in Figure 5.

2.4.2. Setting Stiffness Values

In an cffort to define a leg stiffness range where the model ex-
hibits an optimal stability characteristic, the largest percent-
age reduction in ground stiffness the model was able to over-
come atcach k., value was plotted against ke, at each trotting
speed. In Figure 6(a), the results are shown for the fastest trot-
ting speed. or 4.4 meters/second. Model simulations with kje,

7. The model was considered to be in a stable limit cycle if trotting continued
for 20 running cycles without a significant change to maximum aerial height,
pitch, and forward velocity (least-squares regression, P < 0.05).
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values between 24 kN m~! and 40 kN m~! showed the great-
est capacity for overcoming changes in ground impedance. At
this speed, horses have been shown to use kj¢g values that fall
within the shaded region of Figure 6(a), at the high-stability
plateau. As shown in Figure 6(b), at the low stiffness end of
the high-stability range, the model also predicted that the cost
of transport, or the metabolic energy an animal consumes in
moving a unit of body weight a unit distance, is minimized.
The method used to estimate the cost of transport is described
in the appendix.

It seems that animals operate near the low end of leg stiff-
ness where metabolic energy is the lowest and where the sta-
bility characteristics of the model are most favorable. Hence,
to make predictions of animal behavior at each trotting speed,
leg stiffness values were taken from the high-stability region.

3. Results

3.1. Hip Thrusting and Shoulder Braking

During a trot, hip torques generally thrusted the model for-
ward, powering a running step, and shoulder torques generally
impeded forward progression. This behavior was a prevalent
model characteristic in steady state running. Since the tar-
get forelimb velocity was less than the forward speed of the
model, and the target hindlimb velocity was greater, the shoul-
der generally applied a braking torque and the hip a thrust-
ing torque. As an example, when the average forward trot-
ting speed was 4.4 meters/second, the forelimb target velocity
was 3.5 meters/second and the hindlimb target velocity was
5.2 meters/second. Consequently, braking shoulder torques
and thrusting hip torques were applied by the model’s actu-
ators. This antagonist/protagonist behavior minimized pitch
fluctuations and increased model stability. A complete dis-
cussion of model stability is given in the Discussion section.

3.2. Overall Mechanics and Energetics of the Model

The model’s leg stiffness, kieg, and vertical stiffness, kver,
were compared to experimental stiffness values measured by
Farley, Glasheen, and McMahon (1993) on a horse of simi-
lar body size (135 Kg) and running at similar trotting speeds
(2.1 meters/second to 4.4 meters/second). Animal stiffnesses,
kieg and kyert, are defined in the appendix, egs. (A.1) and (A.2),
respectively. The model exhibited similar compliance behav-
ior, shown in Figure 7a, as the small trotting horse. The
leg stiffness, kjeg, changed little with forward trotting speed
(kleg = 21.4 + 1.89v), but the vertical stiffness, kyen, in-
creased dramatically (kyer = 83.5 — 42.9v + 12.9v%). To
run faster, the horse model rebounded from the ground more
quickly, exerting larger forces on the ground and increasing its
vertical stiffness, kyenr. Similar to a running horse, the model
achieved this force increase not by increasing leg stiffness, but
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Fig. 6. The maximum percentage reduction in ground stiffness
the trotting horse model could overcome in stability tests is
plotted in (a) against the effective leg stiffness, kieg, defined in
eq. (A.1) of the appendix. At the highest trotting speed, horse
simulations with kjeg values of 24 kN m~! and higher ex-
hibited the greatest ability to overcome disturbances in pitch.
However, at this speed, a horse uses kjeg values within the
shaded region, at the low-stiffness end of the stability region
(Farley, Glasheen, and McMahon 1993). The reason for this
low-stiffness preference by animals becomes evident when
the metabolic cost of transport, plotted in (b), is examined
at cach kjep. It seems that trotting horses use leg stiffnesses
where they are highly stable but where energy expenditure is
the lowest. The cost of transport is defined in the appendix.
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Fig. 7.In(a), leg stiffness, k|eg, and vertical stiffness, kyer, are
plotted against forward trotting speed. In (b), the limb excur-
sion angle upon first ground contact, &, is plotted against the
same range of forward trotting speeds. In both plots, the open
circles are animal data from a horse (135 Kg) adapted with
permission from Farley, Glasheen, and McMahon (1993), and
the closed circles are data from horse model simulations. The
leg stiffness, kg, vertical stiffness, kyen, and limb excur-
sion angle, ¢,, are defined in McMahon and Cheng (1990)
and also in the appendix, egs. (A.1), (A.2), and (A.3), re-
spectively. In (a) and (b), least-squares regression lines are
fitted to the simulation data (kieg = 21.4 + 1.89v; kyen =
83.5 — 42.9v + 12.9v2; ¢, = 20.2 + 1.65v), showing good
agreement with the experimental data.
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by sweeping out larger limb excursion angles to increase the
compression of its leg springs. In Figure 7b, the limb excur-
ston angle, defined in the appendix, eq. (A.3), increased with
increasing forward speed (¢, = 20.2 + 1.6v), in agreement
with experimental data.

Model stride frequency, the inverse of the total cycle time,
was compared to experimental data taken by Heglund and
Taylor (1988) on a small trotting horse (140 Kg). The
results, plotted in Figure 8a, agree with the running horse data.
Stride frequency increased with trotting speed with a slope of
0.3. The model’s stride length, normalized by leg length, was
compared to experimental observations on horses, large cats,
dogs, a man, a rhea, and an ostrich presented by Alexander
(1977) and McMahon and Cheng (1990) (Figure 8b). Rel-
ative stride length increased with forward Froude number, a
dimensionless velocity, in a manner similar to the running
bipeds and quadrupeds.

The model’s cost of transport was computed and then com-
pared to the cost of transport of a small running horse (140 Kg)
measured in the study of Hoyt and Taylor (1981). The model
results, plotted in Figure 9, showed excellent agreement with
the horse data. The Kram and Taylor rule (1990) was used to
estimate the cost of transport using only the model’s forward
running speed and average limb contact time in steady state
running. A cost coefficient, C,, was also used to estimate the
model’s cost of transport. The values used to estimate the
energy consumption plotted in Figure 9 are listed in Table 1.
The cost coefficient values were adjusted until the simulation
data agreed with the empirical data of Figure 9. In Table 2,
experimental measurements of the cost coefficient, C,, made
by Kram and Taylor (1990), are listed for three trotting speeds.
The cost coefficient values in Table 1 agree well with the ex-
perimental values listed in Table 2. The manner in which the
cost of transport was computed is discussed in the appendix.

4. Discussion
4.1. Legged Machine Control

Legged machines have balanced successfully while walking
and running using one of two control strategies. In one
strategy. machines remained upright by actively balancing

Table 1. Cost Coefficient Values Used to Estimate the
Model’s Cost of Transport (Figure 9) Are Listed at Four
Trotting Speeds (T)

Forward Speed Cost Coefficient

(meters/sec) (Joules/Newton)
2.1(T) 0.154
2.7(T) 0.156
3.6(T) 0.167
4.4(T) 0.173
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Fig. 8. In (a), stride frequency is plotted against forward
speed. Here, stride frequency = 1/7T, where T is the time
between footfalls of the same foot. Open circles are animal
data from a trotting horse (140 Kg), adapted with permission
from Heglund and Taylor (1988), and closed symbols are sim-
ulation results. Least-squares regression lines are fitted to the
simulation data (firot = 0.7 + 0.34v), showing qualitative
agreement with the experimental data. In (b), the distance
the horse model moved in one complete trotting cycle, or the
stride length, s, is normalized by the leg length, /,, and plot-
ted on logarithmic coordinates against the forward Froude
number, U = u/+/gl,, where u is the forward velocity and
g the gravitational constant. Once again, the open symbols
are animal data and the closed symbols are simulation data.
A least-squares regression line is fitted to the trotting simu-
lation data (s/l, = 2.1U%#%), in general agreement with the
experimental data. The squares are walking stride lengths,
the circles trotting, and the triangles galloping. Animals rep-
resented include horses, large cats, dogs, man, a rhea, and an
ostrich. Animal data adapted with permission from Alexan-
der (1977) and McMahon and Cheng (1990).
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Fig. 9. The cost of transport, or the metabolic energy
consumed by a trotting horse in moving a unit of body
weight a unit distance, is plotted versus speed for the running
model (135 Kg, filled symbols) and a running horse (140
Kg, open symbols). The experimental horse data were taken
with permission from Hoyt and Taylor (1981). The Kram
and Taylor rule (1990) was used to estimate the cost of
transport for the model, using the model’s forward running
speed and average limb contact time in steady-state running.
Experimental measurements of the cost coefficient, C,, made
by Kram and Taylor (1990), were also used at each running
speed. These values are listed in Table 2. The manner in
which the cost of transport was computed is discussed in the
appendix.

Table 2. At Three Trotting Speeds (T), Cost Coefficient
Values Are Listed

Forward Speed Cost Cocfficient

(meters/sec) (Joules/Newton)
2.0(T) 0.154 £ 0.024
3.0(T) 0.166 £+ 0.014
4.0(T) 0.173 £ 0.012

NOTE: Standard errors of the mean are included for four
small horses (mean body mass = 141 Kg). Adapted from
Kram and Taylor (1990); reprinted with permission.

(Manter 1938; McGhee and Kuhner 1969; Frank 1970; Vuko-
bratovic and Stepaneko 1972; Vukobratovic 1973; Gubina,
Hemami, and McGhee 1974; Miura and Shimoyama 1980,
1984; Raibert 1985, 1986, 1990). During ground contact, a
gyroscopic sensor typically was used to detect errors in a ma-
chine’s spatial orientation, and actuator forces were then ap-
plied to minimize these errors. In a second strategy, machines
relied on large curved feet to ensure their balance rather than
active control systems (McGeer 1989, 1990; Ringrose 1997).
In this strategy, a machine was stable simply because of its
shape, requiring no sensory information from the environment
whatsoever.

Although quadrupedal machines were stabilized using
these control strategies (Raibert 1985, 1986, 1990; Ringrose
1997), they nonetheless did not specifically resemble running
animals, morphologically or dynamically. Little is known
about how horses, or for that matter animals in general, bal-
ance when running. However, since quadrupedal animals do
not have large curved feet to ensure their balance, researchers
have speculated that they must actively balance to remain up-
right, most likely relying on their vestibular system instead of
a gyroscope for sensing postural orientation (Raibert 1986).
In the present study, we examined how a horselike robot could
achieve a stable body pitch and forward speed in running. We
used a numerically simulated horse model to test different
control strategies. This study represents a first attempt at un-
derstanding how quadrupedal animals might stabilize their
movement in trotting, even without the use of vestibular in-
puts to actively balance during ground contact.

4.2. Does a Horselike Robot Have to
Actively Balance When Trotting?

Our findings support the hypothesis that a horselike robot does
not have to actively balance to remain upright from running
cycle to running cycle. Inthe model, body pitch is not directly
controlled to correct for errors in pitch during ground contact.
Rather, pitch stabilization is achieved indirectly by controlling
when each foot begins to retract toward the ground during the
aerial phase, and how fast each stance foot moves relative to
the model’s trunk during ground contact. Sensory knowledge
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of'body pitch is not used to actively balance the model but only
to modulate when the limbs begin to retract toward the ground.
Interestingly, when only vertical force information is used to
modulate retraction time, excluding pitch information, the
model has no difficulty remaining balanced. However, when
pitch information is excluded, the trotting motion is irregular
and not smooth. The model bounces to different heights from
one running cycle to the next, exhibiting a pulsing behavior in
time where bouncing height increases to a maximum and then
decreases to a minimum and then increases again, and so on,
in a systematic manner. When pitch information is employed,
the bouncing height becomes steady and regular. This result
suggests that a horse may employ body pitch information to
make trotting smoother, not specifically to remain balanced
in steady state trotting.

4.3. Does Foot Shape Enhance the
Stability of the Model?

The model does not require large curved feet to remain bal-
anced from running cycle to running cycle. In fact, the model
does not even have feet. Each limb contacts the ground at
a single point, making the model statically unstable. The
horse model uses a controller to remain upright, requiring the
following sensory information: (1) ground reaction forces ap-
plied to cach limb, (2) the angle and velocity of each limb, (3)
the leg length and the time rate of change of leg length, and
(4) back and neck joint angles.

4.4. How Does the Horse Model Remain Balanced
without Directly Controlling Body Pitch?

By sustaining the tangential velocity component of each foot
measurced relative to a proximal limb joint, the controller ef-
fectively maintains forward speed. But this velocity control
also has a stabilizing effect on body pitch. When the fore-
limb target velocity is smaller than the forward velocity of the
trotting model and the hindlimb target velocity is greater, the
shoulder generally applies a braking torque during stance and
the hip a thrusting torque similar to the trotting dog of Figure 3.
This thrusting and braking behavior increases model stability
by decreasing angular fluctuations in body pitch throughout
stance, keeping the trunk parallel to the ground without sen-
sory knowledge of the trunk’s orientation in space.

In a trot, if an error in pitch causes the hindlimb to strike
the ground before the forelimb, the thrusting hip counters the
gravitational and inertial forces tending to nose the model into
the ground. On the contrary, if the forelimb strikes first, the
braking shoulder counters the gravitational and inertial forces
tending to push the hip lower than the shoulder. By adjust-
ing the hind and forclimb target velocities, forward velocity
is stabilized and errors in body pitch are diminished during
stance, with the hips acting as the engine of trotting and the
shoulders as the brake.
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Also critical to pitch stabilization is the fact that both pro-
tracted diagonal limbs retract toward the ground at the same
time, before actually striking the ground, near the end of the
aerial phase. A consequence of this control is that both limbs
remain approximately parallel throughout stance, tending to
keep the model’s trunk level with the ground. If limb retrac-
tion only began after a foot actually struck the ground, and
if an error in body pitch caused one foot to strike the ground
before the other foot, the limbs would not be parallel with
one another at mid-stance. This would be true simply be-
cause the second limb to contact the ground would not begin
its retraction at the same time as the first contact limb. By
the time the second limb touched down, the first limb would
have retracted a great deal, causing the limbs to be skewed
throughout stance. Since the limbs are not parallel, one limb
would leave the ground before the other limb, destabilizing
model pitch.

4.5. How Is the Total Hip/Shoulder
Positive Work Dissipated?

Positive mechanical work has to be supplied by the model’s
actuators to sustain forward trotting momentum. There are
two cases in which negative work is performed on the run-
ning model. Nonconservative forces from linear dampers in
the ground diminish the model’s mechanical energy with each
running step. In addition to ground losses, the model’s ac-
tuators perform negative work to decelerate body segments
throughout each running cycle. Both the negative work from
ground dampers and, more significantly, the negative actuator
work required to decelerate body segments must be “paid for”
by positive hip/shoulder actuator work for the total mechani-
cal energy of the running model to be nearly periodic. In sim-
ulation experiments, 160 Joules of work from hip/shoulder
actuators were required to sustain forward trotting momen-
tum at 4.4 meters/second. Of this energy, only 5% was lost
to ground dampers while the remaining energy went into de-
celerating model segments throughout the trotting cycle.

4.6. Why Is Leg Length Critical in Speed Control?

By keeping the tangential velocity component of each foot
constant relative to a proximal limb joint, the forward speed
of the horse model is effectively controlled in trotting. But
why control tangential foot velocity and not angular velocity
ofthe limb? In some sense, the controller attempts to move the
limbs as ifthey were spokes of a steadily rolling wheel, forcing
each foot to move in a steady manner similar to a wheel’s rim.
However, unlike conventional wheels with rigid spokes, the
legs are compliant and may change length. If two vehicles are
traveling at the same forward speed, but one vehicle has large
wheels and the other has small wheels, the small wheels will
rotate at a higher angular velocity. Similarly, when the model
strikes the ground with an unusually large downward velocity,
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the legs compress more, causing them to rotate faster for a
given forward running speed. Thus, forcing angular velocity
to be constant will not result in a steady forward velocity
because compliant legs may change length from one running
cycle to the next.

4.7. How Plausible Is the Horse Model
as a Biological Representation?

The plausibility of the horse model can be tested in a number
of different ways. One test is whether the control methods
lead to an overall model behavior that is consistent with the
mechanics and energetics of trotting horses. In Figures 7
through 9, the simulation results show good agreement with
experimental measurements on horses describing animal stiff-
ness, limb excursion angle. stride frequency, relative stride
length, and the metabolic cost of transport measured at four
different trotting speeds. It is important to point out that the
metabolic predictions of Figure 9 test both the horse model
and the Kram and Taylor empirical rule introduced in the ap-
pendix, eq. (A.5). The horse model predicts how much time,
onaverage, each limb spends on the ground in trotting, and the
Kram and Taylor rule then makes a prediction of metabolic
rate.

Limb-retraction movements of the trotting model agree
qualitatively with animal behavior. In the control model, both
protracted limbs begin retraction simultaneously, near the end
of the aerial phase. Limb retraction is not triggered by first
ground contact but at a computed time after the start of the
acrial phase. With this control, a limb sometimes begins to
retract before actually striking the ground. This model char-
acteristic is similar to the limb motions of the trotting dog in
Figure 2. At the end of the aerial phase, close to when the
dog’s forelimb first strikes the ground, both diagonal limbs be-
gin to retract toward the ground at the same time, remaining
nearly parallel even though the hindlimb contacts the ground
after the forchmb.

Another test of model plausibility is whether the control
inputs are consistent with what is known about biological
sensing. The model’s controller requires sensory information
reporting ground reaction forces applied to each limb, the
angle and velocity of each limb with respect to the body, the
length and rate of change of leg length, back and neck joint
angles, and body pitch.

Animals can measure a joint’s position and velocity using
sensory receptors at or around the joint, or in the muscle fiber
that actuates the joint (Eyzaguirre and Fidone 1975). The
most common receptor within a joint measures both position
and velocity. In the absence of movement, the receptor signals
the position of the joint, but during movement, its discharge
shows a distinct velocity dependency. An animal can also
measure a joint’s position and velocity using stretch receptors
called spindle organs located within muscle fiber (Eyzaguirre
and Fidone 1975). A spindle organ is typically attached in
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parallel with the main muscle mass. Consequently, the organ
experiences the same relative length change as the overall
muscle, thereby acting as a muscle strain gauge.

To determine which limbs are on the ground during loco-
motion and the forces exerted on each limb, animals could
use either cutaneous receptors in their feet or muscle force
receptors. Animals can detect joint force by measuring the
amount of tendon stretch in muscle-tendon units actuating a
joint (Eyzaguirre and Fidone 1975). A tendon organ sends out
action potentials that propagate toward the spinal cord with
greater frequency when the tendon is actively stretched. Since
tendon is in series with muscle, an increase in frequency also
correlates with an increase in the force borne by the muscle
fibers.

The vestibular system could be employed to measure body
pitch. This information could then be used to effectively
modulate the retraction time to make trotting smoother. The
vestibular apparatus has been shown to be critical for the ex-
ecution of many animal movements, such as when an animal
gets up from lying on its side or righting itself in a free fall
(Eyzaguirre and Fidone 1975).

Another model test is whether the torques applied at the
model’s hips and shoulders during stance could actually be
applied by muscles of a horse. Clearly, the control scheme
presented here could not be viewed as a realistic biological
representation if, to achieve stability, the model’s actuators
had to provide moments greater than those obtainable from a
horse’s musculature. Hip and shoulder torques for the trotting
model show peak values around 120 Nm for both the hip and
shoulder. Is this torque value reasonable? When joint torques
were measured on four healthy human males (Mean body
mass = 78.7 Kg) by Roberts (1995), peak hip torque increased
from 25 Nm to 120 Nm when subjects ran up increasingly
steeper slopes from 0 to 12 deg. It seems reasonable that a
running horse weighing 135 Kg would be capable of exerting
torques about its hip and shoulder at least comparable to the
hip torques of a human runner weighing only 78 Kg.

A final plausibility test is whether model stability is sen-
sitive to ground impedance. When animals run in the natural
world, they encounter ground surfaces with a wide variety of
stiffnesses. Anyone who has ever played catch with a dog
can testify that animals easily remain balanced when running
from a rocky trail to a compliant grass surface. Without a sin-
gle control parameter adjustment, the model trotted robustly
when ground stiffness was reduced by almost 80% (from 660
to 126 kN/m; see best fitting line in shaded region, Fig. 6a).

4.8. Alternative Control Schemes

We investigated three alternatives to the control scheme of
Figure 4, to see whether or not stable trotting might still be
obtained. Inone scheme, forward trotting speed was sustained
by requiring both limbs to lengthen beyond their equilibrium
length to thrust the model upward and forward at the end of
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stance. A consequence of this control was that the vertical
oscillations of the center of mass increased dramatically be-
cause the extending limbs exerted too great a vertical lifting
torce on the trunk. The gait resembled a bounding motion
more than a trot, resulting in a vertical stiffness, kyent, that
was much smaller than what has been measured in trotting
animals at a given leg stiffness, kjeg (see egs. (A.1) and (A.2),
in the appendix). The model made realistic predictions of
gait parameters (shown here in Figs. 7 through 9) only when
thrusting hip and shoulder torques sustained forward running
momentum, and only when the stance legs behaved as ideal
springs operating within a particular narrow range of stiffness.

In a second control scheme, both diagonal limbs began to
retract at the instant of first ground contact of one or both di-
agonal limbs. This control strategy produced stable trotting
simulations that made realistic predictions of experimental
data (Herr 1998). However, when biologically realistic delay
times of 80 ms or higher were used to set the time between
actual foot strike and the initiation of limb retraction, the trot-
ting simulation could no longer be stabilized. For this reason,
this particular retraction strategy was not viewed as a realistic
biological representation and was abandoned.

It was also discovered that if pitch was directly controlled,
the model could run robustly without aerial limb retraction.
When the control scheme was altered such that each limb be-
gan its rearward retraction at the instant of first ground con-
tact and not before, pitch stabilization could only be achieved
through the direct application of hip and shoulder torques
to level the body during stance. This result suggests that
limb retraction (as in the scheme of Fig. 4) not only brings
the model into agreement with experimental observations but
also enables the model to stabilize body pitch indirectly as an
cmergent property of the system.

5. Conclusions

The results of this study provide a conceptual framework for
understanding the movements of a trotting horse, and how
these movements change with speed. Furthermore, results
presented here may lead to an improved quadrupedal trotting
machine. We have demonstrated that a horse model based on
ideal springs in the diagonal stance legs is capable of simulat-
ing most features of the trotting gait if leg stiffness falls within
a particular narrow range (see Fig. 6) and if hip and shoul-
der torques sustain forward running momentum. The model
made realistic predictions for the dependence on speed of
important gait parameters, including stride frequency, stride
length, and the cost of transport. Predictions were best when
the model employed one of three control strategies where pos-
tural (pitch) stabilization results. One of the control strategies
is given special attention in this paper because of its basis in
biological evidence. In this strategy, pitch stabilization is not
controlled directly. Instead, control of the aerial time and
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foot speed during stance was found to provide an automatic
stabilization of body pitch.

Appendix: Relevant Background Information

The Mechanics of Trotting

Biologically motivated models of quadrupedal trotting have
been proposed in the past, but they lack the structural detail
necessary to capture important trotting behaviors such as back
and neck flexion and aerial limb retraction (McMahon 1985;
McMahon and Cheng 1990). Furthermore, the models did
not include control systems. They* described the mechanical
behavior of the limbs and body during the stance period of
a running gait. Those characteristics of body structure and
limb movement that enable animals to run from cycle to cycle
without falling over have not been examined.

The most noteworthy of these models was developed by
McMahon and Cheng (1990). The model described limb stiff-
ness and angle behavior during the contact phase of symmetric
gaits such as quadrupedal trotting and bipedal running. In the
trotting gait, a hindlimb strikes the ground close to the same
time as a diagonal forelimb. These diagonal limb pairs were
modeled with a single massless, undamped linear spring of
stiffness, kjeg. The animal’s total body mass was represented
as a point mass attached to the top of the spring. McMahon
and Cheng defined kjeg in terms of the peak vertical ground
reaction force Fyq, acting at mid-stance when the leg spring
is maximally compressed at a distance A/, or

Fmax

Kieg = (A.1)

They defined a second stiffness, which they called the vertical
stiffness, kvert, to describe the vertical motions of the animal
during the ground contact phase, or

Finax
kven = ——,

A2
Ay (A2)
where Ay is the distance the center of mass falls during the
first half of ground contact. They also computed halfthe angle
swept out by the leg spring during ground contact,

f, = sin~! (;—Z) ,
where [, is the leg spring length at the instant of first ground
contact, u is the forward velocity of the model, and ¢, is the
total time the leg spring is on the ground. Results describing
animal stiffness, Kieg, kvert, and limb excursion angle at first
ground contact, e, are plotted in Figure 7 for a 135 Kg trot-

ting horse. These experimental results are compared to the
predictions of the trotting horse model.

(A3)
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The Energetics of Trotting

Cross-bridge models of skeletal muscle are not used in this
paper to predict directly the metabolic energy demands of
quadrupedal running. Instead, an empirical rule is used to es-
timate energetic behavior using only mechanical predictions
trom the model. The empirical rule, presented by Kram and
Taylor in 1990, is based on the observation that the reciprocal
of limb contact time in running increases linearly with forward
speed along with metabolic rate. A useful generalization can
be found by dividing the weight-specific metabolic power by
the reciprocal of an animal’s limb contact time to get a cost
cocfficient that is largely independent of animal speed and
size, or

PlT)Cl C(‘
T (A4)
Here, Ppe is the metabolic power required to run, W is body
weight, 1. is the average time a leg remains in contact with the
ground during a running cycle, and C, is the proportionality
constant or cost coefficient. For quadrupedal mammals, the
cost cocfficicnt has an approximate value of 0.2 J N~ ! across
both speed and size.
The metabolic cost of transport, the energy to transport
unit weight a unit distance, can be found from eq. (A.4) by
simply dividing by the animal’s forward running speed, u, or

Plncl CO

Cost of Transport = = (A5)

u tett

In running simulations, the cost of transport is estimated by
predicting how much time, on average, each limb of the trot-
ting model remains on the ground ata particular forward speed
. Hence, in this paper, the Kram and Taylor rule serves as a
bridge between the mechanics and energetics of locomotion.
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