

Abstract—Embedded systems for wearable robotics are ideally

low-cost, lightweight, miniature, reliable and safe. They have

high peak output and negligible standby power, are simple to use

and program, can support high-performance real-time control

loops and accept additional degrees of freedom, input and output

devices. However, practical solutions cannot accommodate all of

these criteria and compromises are made; while commercial

systems favor cost, safety and reliability, research projects

emphasize ease of development and rapid prototyping. To this

day, no de facto embedded system exists, impeding the

development of novel wearable robots. This work introduces

FlexSEA, the FLEXible, Scalable Electronics Architecture

designed for wearable robotic applications. This accessible and

open-source architecture is useable across various wearable

robotic research initiatives, eliminating the need to design a new

embedded system for each and every research project.

Index Terms – embedded system, control, wearable robotics

I. INTRODUCTION

Electronic architectures for wearable robotics can be
divided in two main categories: microcontroller-based and
embedded computer-based. Commercial products tend to be
microcontroller-based. Research prototypes use
microcontrollers (or FPGA) [5] and embedded computers [1].
For example, in two research groups approaching the design
of a prosthetic knee, Sup et al. used a microcontroller-based
architecture with a single 80MHz microcontroller [6] while
Rouse et al. designed an architecture based on an embedded
computer, a 800MHz Raspberry Pi [1]. Table 1 presents a
general comparison of the two design approaches.

Certain prostheses use off-board (i.e. external, bench-top)

motors and electronics “to accelerate the development
process” and “achieve high performance with a simple
design” [8] (similar approach for exoskeletons in [9]) or plan
on “implementing a self-contained version with on-board
servo-amplifiers, batteries and computational capabilities” as
further works [9]. Many designs rely on commercial motor
drivers [1][4][6][8].

Embedded systems are an important building block in
wearable robots, yet they are seldom the core focus of
research initiatives and, as a result, documentation can be
scarce. There is limited information about failed attempts and
justifications for system redesigns. The main problems
identified in academic papers, grant reports and through
interviews with wearable robotic designers can be grouped

The authors are with the Center for Extreme Bionics in the Media Lab at the

Massachusetts Institute of Technology, Cambridge, MA, 02139. (email:

jfduval@media.mit.edu, hherr@media.mit.edu)

into the following areas: limited reliability, compromised
processing power and battery drain, slow communication
peripherals, limited documentation or reliance on one key
staff for system maintenance, low scalability, minimal
support for custom actuators and control loops on commercial
motor drivers, size, weight and mechanical integration issues.

These problems are faced by researchers in related fields
such as humanoid robotics and wearable computers.
Therefore, many designers and companies have attempted to
design a unified embedded system that could be used in a
broad range of projects. Commercially available modular
hardware platforms include the Microsoft .NET Gadgeteer
system, “an open-source toolkit for building small electronic
devices using the .NET Micro Framework” [12], the popular
Arduino and its Shields (“Shields are boards that can be
plugged on top of the Arduino PCB extending its
capabilities.”1)[13], the BeagleBone Black embedded
computer with Capes and the Intel Edison with Blocks2.
SparkFun popularized the use of “breakout boards”,
minimalist circuit boards that simplify prototyping. These
products are now commonly integrated in academic research
projects [1]. Custom embedded system designs have been
published for wireless sensing [17], miniature mobile robots
[14], and mechatronics education and teaching [15]. The
common goals are to minimize the number of circuit
redesigns and simplify prototyping [17]. In NASA and

1 http://www.arduino.cc/en/Main/ArduinoShields
2 Shields, Capes and Blocks are different name for the same product

category: stackable expansion boards.

FlexSEA: Flexible, Scalable Electronics Architecture for Wearable

Robotic Applications

Jean-François Duval, Hugh M. Herr, Member, IEEE

Center for Extreme Bionics, MIT Media Lab, Cambridge, MA

TABLE 1 ARCHITECTURE COMPARISON

Microcontroller Embedded Computer

Pros

 Small form factor that can
easily be adapted to different
mechanical designs

 Low standby power

 Low unit cost, production

 Processor-efficient bare-metal
software (C and/or ASM)

 Quick design phase

 Easy to use high-level
software (C++, Python, Java,
Matlab)

 Minimize the number of
specialized skills required to
modify the system

Cons

 Development (prototyping)
cost can be higher

 Longer design phase

 Requires Electrical
Engineering skills for the
design, maintenance and
modification

 Bare-metal software (C and/or
ASM): less portable, requires
specialized skills

 Processor-inefficient high-
level software (C++, Python,
Java, Matlab)

 Higher standby power

 Relies on commercial parts
(no control over the
production and life cycle)

 Harder to modify

 Integration issues between
different subsystems

 Sub optimal wiring

General Motor’s Robonaut 2 “Modularity is prevalent
throughout the hardware and software along with innovative
and layered approaches for sensing and control.” [18]
However, to the knowledge of the authors, the specifics of the
design are only available through licensing.

In many instances, the price to pay for modularity is an
increased number of circuit boards, and supplementary inter-
board connections. Wearable robotics projects have higher
integration requirements than most pure robotics and
wearable sensing projects: safety and reliability are primary
functional requirements, especially in powered prostheses and
medical devices. “Obtaining acceptable reliability and
maintainability of connectors has become more acute due to
the modular concept and miniaturization of electronic systems
and efforts to conserve precious metals.”[19] Compared to
humanoid robotics, the number of degrees of freedom is
relatively small (most cited work has one or two degrees of
freedom), but the instantaneous power requirements are high
[1][5][8]; a greater emphasis has to be placed on power
electronics than on fast digital communication between the
modules. The volume and the weight of the embedded system
must be minimized because of their direct impact on the
efficiency of devices attached to body extremities [5].
Simpler, more compact designs can be easier to weatherproof
for real-world use.

Through a careful analysis of wearable robotic

requirements across sensor, actuator and computational
modalities, it will be demonstrated that an embedded system
design can be achieved that is scalable across a plethora of
wearable robotic research programs, and therefore will be
used henceforth for more than one year in one project.

II. SYSTEM DESIGN

A. Core ideas and principles

An important trade-off between microcontroller and
embedded computer based systems is ease of development
versus optimal design. One important shared limitation is the
presence of a single computing element to manage all the
sensors and actuators. Developing high-level algorithms has
the potential to introduce bugs in safety-critical routines, a
problem than can be avoided by using hardware and software
encapsulation. Leveraging the advantages of both
microcontroller and computer based systems resulted in the
following design requirements:

 Combine the power of efficient bare-metal code and the ease
of development of operating systems and high-level
programming languages

 Increase the prototyping efficiency of new wearable robots,
both on the hardware and the software side

 Provide structure for quick modifications and additions of
sensors and actuators

 Provide a scalable and flexible system architecture that can
support one or many degrees of freedom (min. 4)

 Encapsulate safety and reliability watchdogs in low-level
hardware and software

 Applicable to both research prototypes and early production
units

 Minimize and simplify wiring

B. Subsystems

These specifications can be obtained by using one or many
microcontrollers and a computer in the same system, with a
clear boundary between their tasks and functions. The
computer is used for only one task: high-level controls, such
as finite state machines or continuous control laws. One
powerful microcontroller per axis is used to interface with
sensors and simple output devices. A separate circuit
interfaces with the power electronics required for motion
control. Following a business organization naming strategy,
the three FlexSEA boards are named Plan, Manage and
Execute.

1) FlexSEA-Plan
FlexSEA-Plan is an embedded computer, or a

laptop/desktop, used for high-level computing. It boasts a
powerful processor and can run an operating system such as
Linux, thus making the software development process simple.
High-level languages such as Python and Matlab can be used.
Saving experimental data is as simple as writing to a text file
and interacting with the system is simple. FlexSEA-Plan
should be used when ease of development is important, such
as for early prototypes, and when complex algorithms and
control schemes require significant computing power.

2) FlexSEA-Manage
FlexSEA-Manage is used for mid-level computing tasks. It

serves as an interface between FlexSEA-Plan and FlexSEA-
Execute, providing communication protocols translation, data
routing, and time-sharing. It has an Expansion connector that
can interface with a wide variety of input and output devices.
Data acquisition, processing, and aggregation can be done on
this board, thus unloading FlexSEA-Plan from these simple
tasks. For applications that do not require intensive computing,
FlexSEA-Plan can be taken out of the system and FlexSEA-
Manage can host the high-level state machines.

3) FlexSEA-Execute
FlexSEA-Execute is an advanced motor driver that supports
brushed and brushless motors. Wearable robotics applications
require different control loops than the typical position and
current controllers found on commercial drives. FlexSEA-
Execute has onboard sensors (6-axis IMU, temperature,
voltage, current), interfaces (strain gauge amplifier),
processing power and connectivity to make it possible to close

Figure 1 System Architecture Example: 2 DOF

TABLE 2 FLEXSEA-EXECUTE 0.1 SPECIFICATIONS

most control loops onboard. It is well suited for the series
elastic actuators (SEA) [20] commonly used in prostheses
[1][3][8] (easy to close a control loop around different force
sensors (including spring position), supports nested loops,
high bandwidth, etc.) Refer to [25] for more details.

C. System architecture

Figure 1 shows an example architecture than can be used on
a 2 DOF system, such as a bilateral exoskeleton or a
transfemoral knee-ankle prosthesis. While developing and
testing a new system it is expected to have most of the high-
level algorithms running on FlexSEA-Plan. FlexSEA-Manage
is mostly used as a bridge/translator between different
communication busses, but it can also be used to add extra
sensors to the system, to synchronize FlexSEA-Executes, or to
extend the network. FlexSEA-Execute is in charge of all the
motor control algorithms and critical safety features. As the
software behavior stabilizes, the high-level control algorithms
can be ported on FlexSEA-Manage and/or FlexSEA-Execute.
The shared communication libraries make it seamless to use a
different board as the network master. Over time, the role of
FlexSEA-Plan should become less and less important; on a
commercial or pre-commercial application that does not
require major computing power it could be completely
removed from the system, thus reducing the complexity, cost
and volume of the product without designing a new embedded
system.

III. HARDWARE DESIGN

A. FlexSEA-Execute

 At its core, the FlexSEA-Execute board is a brushless

motor driver, customized and optimized for wearable robotics

applications. The high level design goals were to maximize

system integration (small physical dimensions, large number

of integrated peripherals and interfaces, support for external

input and output devices), allow fast communication and

networkability via the use of a fast multi-drop communication

interface, and have built-in safety features.

A Cypress Semiconductor Programmable System on Chip

(PSoC) was selected as the main controller. Unlike most of

the ICs used for this application, it is not a microcontroller

optimized for motor control or a DSP [22] but a hybrid

solution comprising of an ARM Cortex-M3 microcontroller,

analog, and digital reconfigurable blocks, all integrated in one

chip. It allows a tighter integration of analog peripherals, high

performance control loops with minimal CPU intervention,

and more flexibility for the expansion IOs.

 To prevent user errors from creating dangerous situations,

or to recover from a hardware failure, a second controller (a

smaller PSoC), is used as a safety coprocessor. Figure 2

shows the PWM lines going through the second processor. It

has total control over the power bridge and it can place the

system in a fail-safe mode.

Switch-mode power supplies are used to downscale the

battery voltage to logic level at high efficiency. The motor

TABLE 2 FLEXSEA-EXECUTE 0.1 SPECIFICATIONS

control bridges (MOSFET and gate driver) have been

carefully optimized to minimize parasitic inductance and

improve thermal dissipation via the bottom layer of the PCB.

The 6-layer PCB uses planes to minimize trace resistance

and carry heat away from the components. Blind vias are used

to minimize the circuit’s size.

A complete description FlexSEA-Execute v0.1’s design is

available in [25].

Elect.

Supply voltage

(V)
15-24V

Motor current

(A)
8A Continuous, 25A pulsed (100ms every s)

Intermediate

supply
10V 500mA SMPS

Logic supply 5V 500mA SMPS

Motor

Type 3-phase brushless (BLDC)

Sensor(s) Hall effect, optical encoder

Commutation Block (Sinusoidal & FOC HW sup.*)

PWM 12 bits 20kHz, 9.65 bits 100kHz

CPU

Reference PSoC 5LP - CY8C5888AXI-LP096

Special features Programmable analog and digital blocks

CPU/RAM/IOs 80MHz ARM Cortex-M3, 256KB RAM, 62

IOs TQFP Software / IDE PSoC Creator 3.1, C (GCC 4.7.3) and

graphical prog. Co-processor(s) PSoC 4 - CY8C4245LQI-483

Serial

interface

Type 3x Half-Duplex RS-485

Bandwidth Up to 4Mbps with 1TP, 2Mbps tested

 USB Full-Speed (FS) 12 Mbps

Current

sensing

Hardware 0.005Ω resistor

Software /

control
20kHz Proportional-Integral controller

Safety

features

Overvoltage TVS clamps at 36V

Overcurrent Software protection

Locked rotor Hardware - lead shorting circuit

Motor

temperature
Hardware measurement

Board

temperature
CPU + bridge temperature reading

Clutch Variable voltage, 8-bits PWM, 400mA

Strain

gauge

amplifie

r

 Dual stage, 500 < G < 10000, high CMRR

External

periph.

Connector Molex PicoClasp 40 positions, SMD 1mm

pitch IOs available 12

Digital IOs Up to 12

Analog inputs Up to 8 (12-bit SAR, 8-20-bits Sigma Delta)

Serial I²C, SPI, UART

Other 1 optical encoder (A/B/I), 1 Hall effect

encoder (3 pins)

Physical

X (mm) 49

Y (mm) 49

Z (mm)

From 12 to 15mm depending on capacitors

Weight 20.1g barebone, 34.8g with heatsink

PCB

tech.

Layers 6

Copper 1 Oz

Trace/space/via 5/5 mils trace/space, 8/20 mils blind vias

Assembly Double-sided

Other 6-axis IMU, RGB LED

Figure 2 FlexSEA-Execute 0.1 Hardware

B. FlexSEA-Manage

FlexSEA-Manage is a polyvalent circuit that can have a
wide range of usages depending on the system architecture.
In the simplest system designs, it will act as a communication
protocol translator, allowing FlexSEA-Plan and FlexSEA-
Execute to communicate. When multiple FlexSEA-Execute
are used, it routes packets, and can manage communication
timings. It can be used to add extra sensors and output devices
to the system. In systems that do not require the computing
power of an embedded computer, FlexSEA-Manage can host
the high-level state machines.

Its design is centered on a powerful 180MHz STM32F427

ARM Cortex-M4 microcontroller. Its floating point co-
processor can be used, in the future, for complex real-time
control algorithms.

C. FlexSEA-Plan

FlexSEA-Plan can be a laptop/desktop computer, or an

embedded computer. It can be linked to Manage or one

Execute via USB or SPI (embedded computer only). Using a

commercial embedded computer allows roboticists to select

the device that works best for their application (form factor,

OS, processing power). Processing power can easily be added

to the FlexSEA system as new embedded computers are

released. A BeagleBone Black was used for most of our

experiments, and future work will be based on the Intel

Edison. When using a laptop/desktop, Ubuntu was used with

the C/C++ Plan project (including a Qt GUI).

D. Communication

1) Interfacing Plan and Manage

While embedded computers offer substantial processing

power, communication isn’t always optimal. At one extreme,

some of them have simple interfaces such as serial (UART)

and I²C that could be used to directly interface with sensors

and microcontrollers, but the data rates are limited. At the

other extreme, the Ethernet port can be used but it requires

substantial hardware and software overhead on the FlexSEA-

Manage board (same for EtherCAT). SPI offers a

compromise, with typical data rates above 20 Mbits/s, more

than enough for our application. Due to data rate dropping

quickly with distance, FlexSEA-Manage has to be physically

close to Plan (recommended maximum: 15cm). USB can be

used, allowing longer distances. For laptop/desktops it is the

only communication option.

2) Interfacing Manage and one or many Execute

Common choices in robotics are CAN [21] and EtherCAT.

While CAN is cheap, robust and safe, its 1Mbps bandwidth is

an important bottleneck for application with multiple motor

drivers. EtherCAT offers 100Mbps but that speed comes with

a price; the bus requires a Master. When this project was

started, no embedded computer was certified as an EtherCAT

master, thus requiring the presence of a large computer in the

network. The cables, connectors and special ASICs required

for EtherCAT add to the cost, volume and complexity of the

system. With the relatively small number of actuators on a

typical wearable robotics project (less than 4) a simpler and

slower interface can be used. RS-485 is often associated with

old technology [18] but its simplicity, low cost, robustness

and speed (theoretically up to 100Mbps; 20Mbps achievable

in our application) made it an appealing option for FlexSEA,

especially in multi-drop configuration. Three transceivers are

used to allow different communication strategies; from one to

3 twisted pairs can be used to achieve asynchronous half-

duplex (default), synchronous half-duplex, asynchronous

full-duplex or synchronous full-duplex data exchanges.

IV. SOFTWARE DESIGN

While the focus of this work was system and hardware

design, a large amount of embedded software had to be

written to enable all the features of the FlexSEA system. This

section takes a high-level approach to describe the software

design of FlexSEA rather than diving into details. Only the

communication stack shared by the three boards is described,

as it is the key component of the system design. A detailed

description of commands, control loops, organization and

timings, trajectory generations, etc. is available in [23].

Elect.
Supply voltage

(V)

5V in (from Plan or USB), on-board 3V3

regulator Current (mA) 105mA (standalone, latest code running)

Processor

Reference STM32F427ZIT6

Special features Floating-point co-processor

CPU/RAM/IOs 180MHz ARM Cortex-M4, 2MB FLASH,

USB Software / IDE Eclipse C/C++, ARM GCC, OpenOCD

GDB

Serial

interfaces

Type 2x [3x Half-Duplex RS-485]

Bandwidth Up to 10Mbps

Type Full-duplex SPI

Bandwidth 20+ Mbps (tested up to 12Mbps)

USB Full-Speed (FS) / High-Speed (HS)

Periph. /

features

FLASH memory 128Mbits

IMU 6-axis (3x accelero, 3x gyro)

Power output 2x 24V 1A high-side switches

LEDs 2x green, 1x RGB

Switches 1x user input switch

External

periph.

Connector Molex PicoClasp 40 positions, SMD 1mm

pitch IOs available 17, shared with functions below

Digital IOs Up to 9, protected

Analog inputs 8x 12-bit SAR with special functions

Serial I²C, SPI, USART

Physical

X (mm) 40

Y (mm) 40

Z (mm) 10.7

PCB tech.

Layers 4

Copper 1Oz

Trace/space/via 5/5 mils trace/space, 8/20 mils vias

Technology Standard

Assembly Double-sided

Figure 3 Execute (left) and Manage (right) prototypes (v0.1, 2015)

TABLE 3 FLEXSEA-MANAGE 0.1 HARDWARE SPECIFICATIONS

A. Communication and networking: overview

A custom communication protocol was developed for this
project. It is used for the Plan-Manage interface, for the
Manage-Execute interface(s) and with any other
communication peripheral, such as the USB ports present on
Manage and Execute. The hardware layer can be modified; as
long as it can deliver bits from point A to point B, the system
will be transparent to the changes. To avoid conflicts and to
simplify programming, the current version of the
communication stack is highly hierarchical: the Master
always initiates the transfers. Slaves will only emit after a
Read request was received.

The FlexSEA software stack uses an approximation of the

Open Systems Interconnection model (OSI model) by

merging layers 4 through 7 into a single Application layer.

With a limited need for packet routing, layer 3 (Network) is

absorbed by layer 2 (Data link).

B. Application Layer

At the highest abstraction level, intelligent information is
exchanged between different FlexSEA boards regardless of
the physical media used. High-level commands like such as
“set control mode” are exchanged. Command codes are 7-bits
long, left justified; the LSB of the command byte is 1 for Read
commands and 0 for Write commands (P_CMD1 in the lower
part of Figure 4).

C. Data-link Layer

To preserve data integrity, raw bytes should not be sent on
the physical layer. The FlexSEA communication software
automatically adds a header, a footer, an indicator of the
number of bytes in the frame, a packet ID, a checksum to
detect invalid data, and escape characters. High values are
used for the Header, Footer and Escape bytes to avoid

confusion with the command codes. The Sequence byte is
used to keep track of the commands exchanged between the
boards and to detect missed packets3. At this point the
command is ready to be transmitted on any physical bus.

D. Physical Layer

The system is designed to be compatible with any physical
interface. Currently, we use a full-duplex Serial Peripheral
Interface (SPI) bus, or USB, from FlexSEA-Plan to one
FlexSEA-Manage and multi-drop RS-485 busses from
FlexSEA-Manage to FlexSEA-Execute boards. At this level,
the data is in the forms of bits and bytes, represented by
varying electrical levels. In software, sending a command is
as simple as placing a packaged payload (generated by the
Data Link layer) in the relevant transmission buffer.

3 Not implemented in the current software release.

E. Receiving Commands

In the layers description the emphasis was on the
transmission of commands. When bytes are received by a
physical communication interface, the inverse sequence is
done. First, either after new data is received or on a fixed
timing, the reception buffer is parsed by an “un-packaging”
function (data-link level). It searches for a header, then for a
footer in the right position (position calculated from the Bytes
field that follows a valid header) and then for a valid
checksum. Data with a valid Header and Footer is known as
properly framed. When a properly framed command fails at
the checksum test, it is eliminated (buffer erased). If the
checksum is valid it is copied to a new buffer and the original
version is erased to avoid double detection.

This new buffer containing the unpacked payload will be

parsed at the application level. If the Receive ID belongs to
another board the packet will be routed to the appropriate
interface. If it belongs to the board that received it, it will be
decoded and the appropriate application function will be
called.

V. DISCUSSION AND CONCLUSION

A. Results

The core FlexSEA system comprises two custom circuit

boards (FlexSEA-Manage and FlexSEA-Execute), a

computer (laptop/desktop, or embedded) running a C/C++

program (with an optional C++ Qt GUI), a communication

stack shared across all boards, and user code running on

specific boards. The circuits present in a system, the network

structure, and the software are dependent on the application.

This variability prevents the authors from providing reliable,

numerical, “system-wide” performance metrics. Unit tests, as

well as inter-board communication tests, are documented in

[23]. [23] contains detailed results specific to FlexSEA-

Execute.

As of today, FlexSEA has been used to prototype a knee

prosthesis, autonomous ankle exoskeletons and a bilateral

ankle exoskeleton with neuro-inspired controls. Ongoing

projects include a multi-DOF robotic ankle, a new prosthetic

knee, and a 3-joint robotic manipulator.

B. Future Work and Open Source

At the time of this publication FlexSEA is an active project.

The FlexSEA-Execute 0.2 hardware is currently being tested.

Other than minor fixes listed in [23], the main changes are a

wider input voltage range (up to 48V) and the presence of on-

board memory for data logging during long experiments.

No further hardware modifications are planned, the actual

circuits being stable, efficient and reliable. The ongoing

efforts have to be concentrated on software. As a starting

point, a C++ Qt GUI tool is under development. It allows the

user to visualize variables and sensors, to send commands to

different boards, and to tune control loops. Significant

Figure 4 Communication protocol fields

improvements in communication speeds can be achieved via

software (better timing management, multiple transceiver

support, etc.)

 “Free software and open hardware have been successfully

used to bridge access gap in areas where cost was a problem,

democratizing the innovation process.” [24] Closely related

to the academic reality, the Personal Robot 2 (PR2) and Robot

operating System (ROS) from Willow Garage are excellent

examples of the value of open-source technologies. They

allowed the exchange of software among researchers

worldwide, promoting collaboration and quickening the

advancement of science. All the FlexSEA design files and

sources are open-source and can be used as-is, or modified, in

your future project.4

C. Conclusion

In this paper we present a flexible and scalable embedded

system optimized for wearable robotic applications. We

humbly hope that FlexSEA will become a widely adopted

platform in the field of wearable robotics, paving the way for

revolutionary artificial limbs and human augmentation

machines.

ACKNOWLEDGMENT

The authors thank Luke Mooney, Elliott Rouse and

Dominic Létourneau for their invaluable expert advice and

suggestions. Additionally, the authors thank Steven Keyes,

Jake Isenhart and Erin Main for their hard work on the project

as part of MIT's Undergraduate Research Opportunities

Program (UROP).

REFERENCES

[1] Rouse, E.J.; Mooney, L.M.; Martinez-Villalpando, E.C.; Herr, H.M.,

"Clutchable series-elastic actuator: Design of a robotic knee prosthesis

for minimum energy consumption," in Rehabilitation Robotics
(ICORR), 2013 IEEE International Conference on , vol., no., pp.1-6,

24-26 June 2013

[2] E. J. Rouse, L. M. Mooney and H. M. Herr, “Clutchable series-elastic
actuator: Implications for prosthetic knee design”, The International

Journal of Robotics Research, 9 October 2014

[3] Au, S.K.; Herr, H.; Weber, J.; Martinez-Villalpando, E.C., "Powered
Ankle-Foot Prosthesis for the Improvement of Amputee Ambulation,"

in Engineering in Medicine and Biology Society, 2007. EMBS 2007.

29th Annual International Conference of the IEEE , vol., no., pp.3020-
3026, 22-26 Aug. 2007

[4] Walsh, C.J.; Pasch, K.; Herr, H., "An autonomous, underactuated

exoskeleton for load-carrying augmentation," in Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on , vol., no.,

pp.1410-1415, Oct. 2006

[5] Mooney et al. “Autonomous exoskeleton reduces metabolic cost of

human walking.” Journal of NeuroEngineering and Rehabilitation

2014 11:151.

[6] Sup, Frank; Varol, H.A.; Mitchell, J.; Withrow, T.J.; Goldfarb, M.,
"Preliminary Evaluations of a Self-Contained Anthropomorphic

Transfemoral Prosthesis," in Mechatronics, IEEE/ASME Transactions

on , vol.14, no.6, pp.667-676, Dec. 2009
[7] Grebenstein, M.; Albu-Schäffer, A.; Bahls, Thomas; Chalon, M.;

Eiberger, O.; Friedl, W.; Gruber, R.; Haddadin, S.; Hagn, U.; Haslinger,

R.; Hoppner, H.; Jorg, S.; Nickl, Mathias; Nothhelfer, Alexander; Petit,
F.; Reill, J.; Seitz, N.; Wimbock, T.; Wolf, S.; Wusthoff, T.; Hirzinger,

G., "The DLR hand arm system," in Robotics and Automation (ICRA),

4Documentation and files available at http://flexsea.media.mit.edu/

2011 IEEE International Conference on , vol., no., pp.3175-3182, 9-13

May 2011
[8] Caputo, J.M.; Collins, S.H., "An experimental robotic testbed for

accelerated development of ankle prostheses," in Robotics and

Automation (ICRA), 2013 IEEE International Conference on , vol., no.,
pp.2645-2650, 6-10 May 2013

[9] Sup, Frank; Varol, H.A.; Mitchell, J.; Withrow, T.; Goldfarb, M.,

"Design and control of an active electrical knee and ankle prosthesis,"
in Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd

IEEE RAS & EMBS International Conference on , vol., no., pp.523-

528, 19-22 Oct. 2008
[10] Witte, K.A.; Juanjuan Zhang; Jackson, R.W.; Collins, S.H., "Design of

two lightweight, high-bandwidth torque-controlled ankle

exoskeletons," in Robotics and Automation (ICRA), 2015 IEEE
International Conference on , vol., no., pp.1223-1228, 26-30 May 2015

[11] Fleischer, C., “Embedded Control System for a Powered Leg

Exoskeleton,” In Proc. 7th Intern. Workshop Embedded Systems-
Modeling, Technology and Applications, pp. 177-185, 2006

[12] Hodges, Steve; Villar, N.; Scott, J.; Schmidt, A., "A New Era for

Ubicomp Development," in Pervasive Computing, IEEE , vol.11, no.1,
pp.5-9, January-March 2012

[13] Badamasi, Y.A., "The working principle of an Arduino," in Electronics,

Computer and Computation (ICECCO), 2014 11th International
Conference on , vol., no., pp.1-4, Sept. 29 2014-Oct. 1 2014

[14] Yan Meng; Johnson, K.; Simms, B.; Conforth, M., "A generic

architecture of modular embedded system for miniature mobile robots,"
in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ

International Conference on , vol., no., pp.3725-3730, 22-26 Sept.
2008

[15] Nursal, A.O., "Modular embedded system design for mechatronic

education" in Mechatronics and Embedded Systems and Applications
(MESA), 2010 IEEE/ASME International Conference on , vol., no.,

pp.109-112, 15-17 July 2010

[16] Mitchell, R.J.; Grimbleby, J.B.; Loader, R.J.; Kambhampati, C.,
"Modular embedded system for teaching real-time control," in Control,

1994. Control '94. International Conference on , vol.1, no., pp.471-475

vol.1, 21-24 March 1994 4
[17] Benbasat, A.Y.; Morris, S.J.; Paradiso, J.A., "A wireless modular

sensor architecture and its application in on-shoe gait analysis,"

in Sensors, 2003. Proceedings of IEEE , vol.2, no., pp.1086-1091
Vol.2, 22-24 Oct. 2003

[18] Diftler, M.A.; Mehling, J.S.; Abdallah, M.E.; Radford, N.A.;

Bridgwater, L.B.; Sanders, A.M.; Askew, R.S.; Linn, D.M.;
Yamokoski, J.D.; Permenter, F.A.; Hargrave, B.K.; Piatt, R.; Savely,

R.T.; Ambrose, R.O., "Robonaut 2 - The first humanoid robot in space,"

in Robotics and Automation (ICRA), 2011 IEEE International
Conference on , vol., no., pp.2178-2183, 9-13 May 2011

[19] Desmet, H., “Engineering and reliability aspects of connectors in

electronic system applications,” in Microelectronics and Reliability,
Vol. 17, pp. 185-192, 1978

[20] G. A. Pratt, M. M. Williamson, “Series Elastic Actuators”, MIT

Artificial Intelligence Laboratory and Laboratory for Computer
Science, 1995

[21] Harris, A.; Katyal, K.; Para, M.; Thomas, J., "Revolutionizing

Prosthetics software technology," in Systems, Man, and Cybernetics
(SMC), 2011 IEEE International Conference on , vol., no., pp.2877-

2884, 9-12 Oct. 2011

[22] Zongwu Xie; Jingdong Zhao; Jianbin Huang; Kui Sun; Genliang
Xiong; Hong Liu, "DSP/FPGA-based highly integrated flexible joint

robot," in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ

International Conference on , vol., no., pp.2397-2402, 10-15 Oct. 2009
[23] Duval, J-F., “FlexSEA: Flexible, Scalable Electronics Architecture for

Wearable Robotic Applications,” Master’s thesis, Massachusetts

Institute of Technology, Media Arts and Sciences 2015
[24] Jose, M.A.; Martinazzo, A.A.G.; Biazon, L.C.; Ficheman, I.K.; Lopes,

R.D.; Zuffo, M.K., "Power wheelchair open platform," in 2014 5th

IEEE RAS & EMBS International Conference on Biomedical Robotics
and Biomechatronics, vol., no., pp.455-460, 12-15 Aug. 2014

[25] Duval, J-F.; Herr, H. M., “FlexSEA-Execute: Advanced Motion

Controller for Wearable Robotic Applications,” Biomedical Robotics
and Biomechatronics, 2016. BioRob 2016. 6th IEEE RAS/EMBS

International Conference on, 26-29 Jun. 2016. In press.

