
  

 

Abstract—Embedded systems for wearable robotics are ideally 

low-cost, lightweight, miniature, reliable and safe. They have 

high peak output and negligible standby power, are simple to use 

and program, can support high-performance real-time control 

loops and accept additional degrees of freedom, input and output 

devices. However, practical solutions cannot accommodate all of 

these criteria and compromises are made; while commercial 

systems favor cost, safety and reliability, research projects 

emphasize ease of development and rapid prototyping. To this 

day, no de facto embedded system exists, impeding the 

development of novel wearable robots. This work introduces 

FlexSEA, the FLEXible, Scalable Electronics Architecture 

designed for wearable robotic applications. This accessible and 

open-source architecture is useable across various wearable 

robotic research initiatives, eliminating the need to design a new 

embedded system for each and every research project.  

 

Index Terms – embedded system, control, wearable robotics 

I. INTRODUCTION 

Electronic architectures for wearable robotics can be 
divided in two main categories: microcontroller-based and 
embedded computer-based. Commercial products tend to be 
microcontroller-based. Research prototypes use 
microcontrollers (or FPGA) [5] and embedded computers [1]. 
For example, in two research groups approaching the design 
of a prosthetic knee, Sup et al. used a microcontroller-based 
architecture with a single 80MHz microcontroller [6] while 
Rouse et al. designed an architecture based on an embedded 
computer, a 800MHz Raspberry Pi [1]. Table 1 presents a 
general comparison of the two design approaches. 

 
Certain prostheses use off-board (i.e. external, bench-top) 

motors and electronics “to accelerate the development 
process” and “achieve high performance with a simple 
design” [8] (similar approach for exoskeletons in [9]) or plan 
on “implementing a self-contained version with on-board 
servo-amplifiers, batteries and computational capabilities” as 
further works [9]. Many designs rely on commercial motor 
drivers [1][4][6][8]. 
 

Embedded systems are an important building block in 
wearable robots, yet they are seldom the core focus of 
research initiatives and, as a result, documentation can be 
scarce. There is limited information about failed attempts and 
justifications for system redesigns. The main problems 
identified in academic papers, grant reports and through 
interviews with wearable robotic designers can be grouped 
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into the following areas: limited reliability, compromised 
processing power and battery drain, slow communication 
peripherals, limited documentation or reliance on one key 
staff for system maintenance, low scalability, minimal 
support for custom actuators and control loops on commercial 
motor drivers, size, weight and mechanical integration issues. 
 

These problems are faced by researchers in related fields 
such as humanoid robotics and wearable computers. 
Therefore, many designers and companies have attempted to 
design a unified embedded system that could be used in a 
broad range of projects. Commercially available modular 
hardware platforms include the Microsoft .NET Gadgeteer 
system, “an open-source toolkit for building small electronic 
devices using the .NET Micro Framework” [12], the popular 
Arduino and its Shields (“Shields are boards that can be 
plugged on top of the Arduino PCB extending its 
capabilities.”1)[13], the BeagleBone Black embedded 
computer with Capes and the Intel Edison with Blocks2. 
SparkFun popularized the use of “breakout boards”, 
minimalist circuit boards that simplify prototyping. These 
products are now commonly integrated in academic research 
projects [1]. Custom embedded system designs have been 
published for wireless sensing [17], miniature mobile robots 
[14], and mechatronics education and teaching [15]. The 
common goals are to minimize the number of circuit 
redesigns and simplify prototyping [17]. In NASA and 

1 http://www.arduino.cc/en/Main/ArduinoShields  
2 Shields, Capes and Blocks are different name for the same product 

category: stackable expansion boards. 
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TABLE 1 ARCHITECTURE COMPARISON 

Microcontroller Embedded Computer 

Pros 

 Small form factor that can 
easily be adapted to different 
mechanical designs 

 Low standby power 

 Low unit cost, production 

 Processor-efficient bare-metal 
software (C and/or ASM) 

 Quick design phase 

 Easy to use high-level 
software (C++, Python, Java, 
Matlab) 

 Minimize the number of 
specialized skills required to 
modify the system 

Cons 

 Development (prototyping) 
cost can be higher 

 Longer design phase 

 Requires Electrical 
Engineering skills for the 
design, maintenance and 
modification 

 Bare-metal software (C and/or 
ASM): less portable, requires 
specialized skills 

 Processor-inefficient high-
level software (C++, Python, 
Java, Matlab) 

 Higher standby power 

 Relies on commercial parts 
(no control over the 
production and life cycle) 

 Harder to modify 

 Integration issues between 
different subsystems 

 Sub optimal wiring 

 



  

General Motor’s Robonaut 2 “Modularity is prevalent 
throughout the hardware and software along with innovative 
and layered approaches for sensing and control.” [18] 
However, to the knowledge of the authors, the specifics of the 
design are only available through licensing. 
 

In many instances, the price to pay for modularity is an 
increased number of circuit boards, and supplementary inter-
board connections. Wearable robotics projects have higher 
integration requirements than most pure robotics and 
wearable sensing projects: safety and reliability are primary 
functional requirements, especially in powered prostheses and 
medical devices. “Obtaining acceptable reliability and 
maintainability of connectors has become more acute due to 
the modular concept and miniaturization of electronic systems 
and efforts to conserve precious metals.”[19] Compared to 
humanoid robotics, the number of degrees of freedom is 
relatively small (most cited work has one or two degrees of 
freedom), but the instantaneous power requirements are high 
[1][5][8]; a greater emphasis has to be placed on power 
electronics than on fast digital communication between the 
modules. The volume and the weight of the embedded system 
must be minimized because of their direct impact on the 
efficiency of devices attached to body extremities [5]. 
Simpler, more compact designs can be easier to weatherproof 
for real-world use. 

 
Through a careful analysis of wearable robotic 

requirements across sensor, actuator and computational 
modalities, it will be demonstrated that an embedded system 
design can be achieved that is scalable across a plethora of 
wearable robotic research programs, and therefore will be 
used henceforth for more than one year in one project. 

II. SYSTEM DESIGN 

A. Core ideas and principles 

An important trade-off between microcontroller and 
embedded computer based systems is ease of development 
versus optimal design. One important shared limitation is the 
presence of a single computing element to manage all the 
sensors and actuators. Developing high-level algorithms has 
the potential to introduce bugs in safety-critical routines, a 
problem than can be avoided by using hardware and software 
encapsulation. Leveraging the advantages of both 
microcontroller and computer based systems resulted in the 
following design requirements: 

 

 Combine the power of efficient bare-metal code and the ease 
of development of operating systems and high-level 
programming languages 

 Increase the prototyping efficiency of new wearable robots, 
both on the hardware and the software side 

 Provide structure for quick modifications and additions of 
sensors and actuators 

 Provide a scalable and flexible system architecture that can 
support one or many degrees of freedom (min. 4) 

 Encapsulate safety and reliability watchdogs in low-level 
hardware and software 

 Applicable to both research prototypes and early production 
units 

 Minimize and simplify wiring 

B. Subsystems 

These specifications can be obtained by using one or many 
microcontrollers and a computer in the same system, with a 
clear boundary between their tasks and functions. The 
computer is used for only one task: high-level controls, such 
as finite state machines or continuous control laws. One 
powerful microcontroller per axis is used to interface with 
sensors and simple output devices. A separate circuit 
interfaces with the power electronics required for motion 
control. Following a business organization naming strategy, 
the three FlexSEA boards are named Plan, Manage and 
Execute. 

1) FlexSEA-Plan 
FlexSEA-Plan is an embedded computer, or a 

laptop/desktop, used for high-level computing. It boasts a 
powerful processor and can run an operating system such as 
Linux, thus making the software development process simple. 
High-level languages such as Python and Matlab can be used. 
Saving experimental data is as simple as writing to a text file 
and interacting with the system is simple. FlexSEA-Plan 
should be used when ease of development is important, such 
as for early prototypes, and when complex algorithms and 
control schemes require significant computing power. 

2) FlexSEA-Manage 
FlexSEA-Manage is used for mid-level computing tasks. It 

serves as an interface between FlexSEA-Plan and FlexSEA-
Execute, providing communication protocols translation, data 
routing, and time-sharing. It has an Expansion connector that 
can interface with a wide variety of input and output devices. 
Data acquisition, processing, and aggregation can be done on 
this board, thus unloading FlexSEA-Plan from these simple 
tasks. For applications that do not require intensive computing, 
FlexSEA-Plan can be taken out of the system and FlexSEA-
Manage can host the high-level state machines. 

3) FlexSEA-Execute 
FlexSEA-Execute is an advanced motor driver that supports 
brushed and brushless motors. Wearable robotics applications 
require different control loops than the typical position and 
current controllers found on commercial drives. FlexSEA-
Execute has onboard sensors (6-axis IMU, temperature, 
voltage, current), interfaces (strain gauge amplifier), 
processing power and connectivity to make it possible to  close 

 
Figure 1 System Architecture Example: 2 DOF 
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most control loops onboard. It is well suited for the series 
elastic actuators (SEA) [20] commonly used in prostheses 
[1][3][8] (easy to close a control loop around different force 
sensors (including spring position), supports nested loops, 
high bandwidth, etc.) Refer to [25] for more details. 

C. System architecture 

Figure 1 shows an example architecture than can be used on 
a 2 DOF system, such as a bilateral exoskeleton or a 
transfemoral knee-ankle prosthesis. While developing and 
testing a new system it is expected to have most of the high-
level algorithms running on FlexSEA-Plan. FlexSEA-Manage 
is mostly used as a bridge/translator between different 
communication busses, but it can also be used to add extra 
sensors to the system, to synchronize FlexSEA-Executes, or to 
extend the network. FlexSEA-Execute is in charge of all the 
motor control algorithms and critical safety features. As the 
software behavior stabilizes, the high-level control algorithms 
can be ported on FlexSEA-Manage and/or FlexSEA-Execute. 
The shared communication libraries make it seamless to use a 
different board as the network master. Over time, the role of 
FlexSEA-Plan should become less and less important; on a 
commercial or pre-commercial application that does not 
require major computing power it could be completely 
removed from the system, thus reducing the complexity, cost 
and volume of the product without designing a new embedded 
system. 

III. HARDWARE DESIGN 

A.  FlexSEA-Execute 

 At its core, the FlexSEA-Execute board is a brushless 

motor driver, customized and optimized for wearable robotics 

applications. The high level design goals were to maximize 

system integration (small physical dimensions, large number 

of integrated peripherals and interfaces, support for external 

input and output devices), allow fast communication and 

networkability via the use of a fast multi-drop communication 

interface, and have built-in safety features.  

 

A Cypress Semiconductor Programmable System on Chip 

(PSoC) was selected as the main controller. Unlike most of 

the ICs used for this application, it is not a microcontroller 

optimized for motor control or a DSP [22] but a hybrid 

solution comprising of an ARM Cortex-M3 microcontroller, 

analog, and digital reconfigurable blocks, all integrated in one 

chip. It allows a tighter integration of analog peripherals, high 

performance control loops with minimal CPU intervention, 

and more flexibility for the expansion IOs. 

 

 To prevent user errors from creating dangerous situations, 

or to recover from a hardware failure, a second controller (a 

smaller PSoC), is used as a safety coprocessor. Figure 2 

shows the PWM lines going through the second processor. It 

has total control over the power bridge and it can place the 

system in a fail-safe mode. 

 

Switch-mode power supplies are used to downscale the 

battery voltage to logic level at high efficiency. The motor 

TABLE 2 FLEXSEA-EXECUTE 0.1 SPECIFICATIONS 

control bridges (MOSFET and gate driver) have been 

carefully optimized to minimize parasitic inductance and 

improve thermal dissipation via the bottom layer of the PCB. 

 

The 6-layer PCB uses planes to minimize trace resistance 

and carry heat away from the components. Blind vias are used 

to minimize the circuit’s size.  

  

A complete description FlexSEA-Execute v0.1’s design is 

available in [25]. 

Elect. 

Supply voltage 

(V) 
15-24V 

Motor current 

(A) 
8A Continuous, 25A pulsed (100ms every s) 

Intermediate 

supply 
10V 500mA SMPS 

Logic supply 5V 500mA SMPS 

Motor 

Type 3-phase brushless (BLDC) 

Sensor(s) Hall effect, optical encoder 

Commutation Block (Sinusoidal & FOC HW sup.*) 

PWM 12 bits 20kHz, 9.65 bits 100kHz 

CPU 

Reference PSoC 5LP - CY8C5888AXI-LP096 

Special features Programmable analog and digital blocks 

CPU/RAM/IOs 80MHz ARM Cortex-M3, 256KB RAM, 62 

IOs TQFP Software / IDE PSoC Creator 3.1, C (GCC 4.7.3) and 

graphical prog. Co-processor(s) PSoC 4 - CY8C4245LQI-483 

Serial 

interface 

Type 3x Half-Duplex RS-485 

Bandwidth Up to 4Mbps with 1TP, 2Mbps tested  

 USB   Full-Speed (FS) 12 Mbps 

Current 

sensing 

Hardware 0.005Ω resistor 

Software / 

control 
20kHz Proportional-Integral controller 

Safety 

features 

Overvoltage TVS clamps at 36V 

Overcurrent Software protection 

Locked rotor Hardware - lead shorting circuit 

Motor 

temperature 
Hardware measurement 

Board 

temperature 
CPU + bridge temperature reading 

Clutch   Variable voltage, 8-bits PWM, 400mA 

Strain 

gauge 

amplifie

r 

  Dual stage, 500 < G < 10000, high CMRR 

External 

periph. 

Connector Molex PicoClasp 40 positions, SMD 1mm 

pitch IOs available 12 

Digital IOs Up to 12 

Analog inputs Up to 8 (12-bit SAR, 8-20-bits Sigma Delta) 

Serial I²C, SPI, UART 

Other 1 optical encoder (A/B/I), 1 Hall effect 

encoder (3 pins) 

Physical 

X (mm) 49 

Y (mm) 49 

Z (mm) 

 

 

From 12 to 15mm depending on capacitors 

 

 
Weight 20.1g barebone, 34.8g with heatsink  

 

PCB 

tech. 

Layers 6 

Copper 1 Oz 

Trace/space/via 5/5 mils trace/space, 8/20 mils blind vias 

Assembly Double-sided 

Other   6-axis IMU, RGB LED 

 

 

 

Figure 2 FlexSEA-Execute 0.1 Hardware 



  

B. FlexSEA-Manage 

FlexSEA-Manage is a polyvalent circuit that can have a 
wide range of usages depending on the system architecture. 
In the simplest system designs, it will act as a communication 
protocol translator, allowing FlexSEA-Plan and FlexSEA-
Execute to communicate. When multiple FlexSEA-Execute 
are used, it routes packets, and can manage communication 
timings. It can be used to add extra sensors and output devices 
to the system. In systems that do not require the computing 
power of an embedded computer, FlexSEA-Manage can host 
the high-level state machines. 

 
Its design is centered on a powerful 180MHz STM32F427 

ARM Cortex-M4 microcontroller. Its floating point co-
processor can be used, in the future, for complex real-time 
control algorithms. 

C. FlexSEA-Plan 

FlexSEA-Plan can be a laptop/desktop computer, or an 

embedded computer. It can be linked to Manage or one 

Execute via USB or SPI (embedded computer only). Using a 

commercial embedded computer allows roboticists to select 

the device that works best for their application (form factor, 

OS, processing power). Processing power can easily be added 

to the FlexSEA system as new embedded computers are 

released. A BeagleBone Black was used for most of our 

experiments, and future work will be based on the Intel 

Edison. When using a laptop/desktop, Ubuntu was used with 

the C/C++ Plan project (including a Qt GUI). 

D. Communication 

1) Interfacing Plan and Manage 

While embedded computers offer substantial processing 

power, communication isn’t always optimal. At one extreme, 

some of them have simple interfaces such as serial (UART) 

and I²C that could be used to directly interface with sensors 

and microcontrollers, but the data rates are limited. At the 

other extreme, the Ethernet port can be used but it requires 

substantial hardware and software overhead on the FlexSEA-

Manage board (same for EtherCAT). SPI offers a 

compromise, with typical data rates above 20 Mbits/s, more 

than enough for our application. Due to data rate dropping 

quickly with distance, FlexSEA-Manage has to be physically 

close to Plan (recommended maximum: 15cm). USB can be 

used, allowing longer distances. For laptop/desktops it is the 

only communication option. 

 

2) Interfacing Manage and one or many Execute 

Common choices in robotics are CAN [21] and EtherCAT. 

While CAN is cheap, robust and safe, its 1Mbps bandwidth is 

an important bottleneck for application with multiple motor 

drivers. EtherCAT offers 100Mbps but that speed comes with 

a price; the bus requires a Master. When this project was 

started, no embedded computer was certified as an EtherCAT 

master, thus requiring the presence of a large computer in the 

network. The cables, connectors and special ASICs required 

for EtherCAT add to the cost, volume and complexity of the 

system. With the relatively small number of actuators on a 

typical wearable robotics project (less than 4) a simpler and 

slower interface can be used. RS-485 is often associated with 

old technology [18] but its simplicity, low cost, robustness 

and speed (theoretically up to 100Mbps; 20Mbps achievable 

in our application) made it an appealing option for FlexSEA, 

especially in multi-drop configuration. Three transceivers are 

used to allow different communication strategies; from one to 

3 twisted pairs can be used to achieve asynchronous half-

duplex (default), synchronous half-duplex, asynchronous 

full-duplex or synchronous full-duplex data exchanges. 

IV. SOFTWARE DESIGN 

While the focus of this work was system and hardware 

design, a large amount of embedded software had to be 

written to enable all the features of the FlexSEA system. This 

section takes a high-level approach to describe the software 

design of FlexSEA rather than diving into details. Only the 

communication stack shared by the three boards is described, 

as it is the key component of the system design. A detailed 

description of commands, control loops, organization and 

timings, trajectory generations, etc. is available in [23]. 

Elect. 
Supply voltage 

(V) 

5V in (from Plan or USB), on-board 3V3 

regulator Current (mA) 105mA (standalone, latest code running) 

Processor 

Reference STM32F427ZIT6 

Special features Floating-point co-processor 

CPU/RAM/IOs 180MHz ARM Cortex-M4, 2MB FLASH, 

USB Software / IDE Eclipse C/C++, ARM GCC, OpenOCD 

GDB 

Serial 

interfaces 

Type 2x [3x Half-Duplex RS-485] 

Bandwidth Up to 10Mbps 

Type Full-duplex SPI 

Bandwidth 20+ Mbps (tested up to 12Mbps) 

USB   Full-Speed (FS) / High-Speed (HS) 

Periph. / 

features 

FLASH memory 128Mbits 

IMU 6-axis (3x accelero, 3x gyro) 

Power output 2x 24V 1A high-side switches 

LEDs 2x green, 1x RGB 

Switches 1x user input switch 

External 

periph. 

Connector  Molex PicoClasp 40 positions, SMD 1mm 

pitch IOs available 17, shared with functions below 

Digital IOs Up to 9, protected 

Analog inputs 8x 12-bit SAR with special functions 

Serial I²C, SPI, USART 

Physical 

X (mm) 40 

Y (mm) 40 

Z (mm) 10.7 

PCB tech. 

Layers 4 

Copper 1Oz 

Trace/space/via 5/5 mils trace/space, 8/20 mils vias 

Technology Standard 

Assembly Double-sided 

 
Figure 3 Execute (left) and Manage (right) prototypes (v0.1, 2015) 
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A. Communication and networking: overview 

A custom communication protocol was developed for this 
project. It is used for the Plan-Manage interface, for the 
Manage-Execute interface(s) and with any other 
communication peripheral, such as the USB ports present on 
Manage and Execute. The hardware layer can be modified; as 
long as it can deliver bits from point A to point B, the system 
will be transparent to the changes. To avoid conflicts and to 
simplify programming, the current version of the 
communication stack is highly hierarchical: the Master 
always initiates the transfers. Slaves will only emit after a 
Read request was received. 

 
The FlexSEA software stack uses an approximation of the 

Open Systems Interconnection model (OSI model) by 

merging layers 4 through 7 into a single Application layer. 

With a limited need for packet routing, layer 3 (Network) is 

absorbed by layer 2 (Data link). 

B. Application Layer 

At the highest abstraction level, intelligent information is 
exchanged between different FlexSEA boards regardless of 
the physical media used. High-level commands like such as 
“set control mode” are exchanged. Command codes are 7-bits 
long, left justified; the LSB of the command byte is 1 for Read 
commands and 0 for Write commands (P_CMD1 in the lower 
part of Figure 4). 

C. Data-link Layer 

To preserve data integrity, raw bytes should not be sent on 
the physical layer. The FlexSEA communication software 
automatically adds a header, a footer, an indicator of the 
number of bytes in the frame, a packet ID, a checksum to 
detect invalid data, and escape characters. High values are 
used for the Header, Footer and Escape bytes to avoid 

confusion with the command codes. The Sequence byte is 
used to keep track of the commands exchanged between the 
boards and to detect missed packets3. At this point the 
command is ready to be transmitted on any physical bus. 

D. Physical Layer 

The system is designed to be compatible with any physical 
interface. Currently, we use a full-duplex Serial Peripheral 
Interface (SPI) bus, or USB, from FlexSEA-Plan to one 
FlexSEA-Manage and multi-drop RS-485 busses from 
FlexSEA-Manage to FlexSEA-Execute boards. At this level, 
the data is in the forms of bits and bytes, represented by 
varying electrical levels. In software, sending a command is 
as simple as placing a packaged payload (generated by the 
Data Link layer) in the relevant transmission buffer. 

 
3 Not implemented in the current software release. 

E. Receiving Commands 

In the layers description the emphasis was on the 
transmission of commands. When bytes are received by a 
physical communication interface, the inverse sequence is 
done. First, either after new data is received or on a fixed 
timing, the reception buffer is parsed by an “un-packaging” 
function (data-link level). It searches for a header, then for a 
footer in the right position (position calculated from the Bytes 
field that follows a valid header) and then for a valid 
checksum. Data with a valid Header and Footer is known as 
properly framed. When a properly framed command fails at 
the checksum test, it is eliminated (buffer erased). If the 
checksum is valid it is copied to a new buffer and the original 
version is erased to avoid double detection. 

 
This new buffer containing the unpacked payload will be 

parsed at the application level. If the Receive ID belongs to 
another board the packet will be routed to the appropriate 
interface. If it belongs to the board that received it, it will be 
decoded and the appropriate application function will be 
called. 

V. DISCUSSION AND CONCLUSION 

A. Results 

The core FlexSEA system comprises two custom circuit 

boards (FlexSEA-Manage and FlexSEA-Execute), a 

computer (laptop/desktop, or embedded) running a C/C++ 

program (with an optional C++ Qt GUI), a communication 

stack shared across all boards, and user code running on 

specific boards. The circuits present in a system, the network 

structure, and the software are dependent on the application. 

This variability prevents the authors from providing reliable, 

numerical, “system-wide” performance metrics. Unit tests, as 

well as inter-board communication tests, are documented in 

[23]. [23] contains detailed results specific to FlexSEA-

Execute.  

 

As of today, FlexSEA has been used to prototype a knee 

prosthesis, autonomous ankle exoskeletons and a bilateral 

ankle exoskeleton with neuro-inspired controls. Ongoing 

projects include a multi-DOF robotic ankle, a new prosthetic 

knee, and a 3-joint robotic manipulator. 

  

B. Future Work and Open Source 

At the time of this publication FlexSEA is an active project. 

The FlexSEA-Execute 0.2 hardware is currently being tested. 

Other than minor fixes listed in [23], the main changes are a 

wider input voltage range (up to 48V) and the presence of on-

board memory for data logging during long experiments.  

 

No further hardware modifications are planned, the actual 

circuits being stable, efficient and reliable. The ongoing 

efforts have to be concentrated on software. As a starting 

point, a C++ Qt GUI tool is under development. It allows the 

user to visualize variables and sensors, to send commands to 

different boards, and to tune control loops. Significant 

 
Figure 4 Communication protocol fields 

 



  

improvements in communication speeds can be achieved via 

software (better timing management, multiple transceiver 

support, etc.) 

 

 “Free software and open hardware have been successfully 

used to bridge access gap in areas where cost was a problem, 

democratizing the innovation process.” [24] Closely related 

to the academic reality, the Personal Robot 2 (PR2) and Robot 

operating System (ROS) from Willow Garage are excellent 

examples of the value of open-source technologies. They 

allowed the exchange of software among researchers 

worldwide, promoting collaboration and quickening the 

advancement of science. All the FlexSEA design files and 

sources are open-source and can be used as-is, or modified, in 

your future project.4 

C. Conclusion 

In this paper we present a flexible and scalable embedded 

system optimized for wearable robotic applications. We 

humbly hope that FlexSEA will become a widely adopted 

platform in the field of wearable robotics, paving the way for 

revolutionary artificial limbs and human augmentation 

machines. 
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[7] Grebenstein, M.; Albu-Schäffer, A.; Bahls, Thomas; Chalon, M.; 

Eiberger, O.; Friedl, W.; Gruber, R.; Haddadin, S.; Hagn, U.; Haslinger, 

R.; Hoppner, H.; Jorg, S.; Nickl, Mathias; Nothhelfer, Alexander; Petit, 
F.; Reill, J.; Seitz, N.; Wimbock, T.; Wolf, S.; Wusthoff, T.; Hirzinger, 

G., "The DLR hand arm system," in Robotics and Automation (ICRA), 

 
4Documentation and files available at http://flexsea.media.mit.edu/  

2011 IEEE International Conference on , vol., no., pp.3175-3182, 9-13 

May 2011  
[8] Caputo, J.M.; Collins, S.H., "An experimental robotic testbed for 

accelerated development of ankle prostheses," in Robotics and 

Automation (ICRA), 2013 IEEE International Conference on , vol., no., 
pp.2645-2650, 6-10 May 2013 

[9] Sup, Frank; Varol, H.A.; Mitchell, J.; Withrow, T.; Goldfarb, M., 

"Design and control of an active electrical knee and ankle prosthesis," 
in Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd 

IEEE RAS & EMBS International Conference on , vol., no., pp.523-

528, 19-22 Oct. 2008 
[10] Witte, K.A.; Juanjuan Zhang; Jackson, R.W.; Collins, S.H., "Design of 

two lightweight, high-bandwidth torque-controlled ankle 

exoskeletons," in Robotics and Automation (ICRA), 2015 IEEE 
International Conference on , vol., no., pp.1223-1228, 26-30 May 2015 

[11] Fleischer, C., “Embedded Control System for a Powered Leg 

Exoskeleton,” In Proc. 7th Intern. Workshop Embedded Systems-
Modeling, Technology and Applications, pp. 177-185, 2006 

[12] Hodges, Steve; Villar, N.; Scott, J.; Schmidt, A., "A New Era for 

Ubicomp Development," in Pervasive Computing, IEEE , vol.11, no.1, 
pp.5-9, January-March 2012 

[13] Badamasi, Y.A., "The working principle of an Arduino," in Electronics, 

Computer and Computation (ICECCO), 2014 11th International 
Conference on , vol., no., pp.1-4, Sept. 29 2014-Oct. 1 2014 

[14] Yan Meng; Johnson, K.; Simms, B.; Conforth, M., "A generic 

architecture of modular embedded system for miniature mobile robots," 
in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ 

International Conference on , vol., no., pp.3725-3730, 22-26 Sept. 
2008 

[15] Nursal, A.O., "Modular embedded system design for mechatronic 

education" in Mechatronics and Embedded Systems and Applications 
(MESA), 2010 IEEE/ASME International Conference on , vol., no., 

pp.109-112, 15-17 July 2010 

[16] Mitchell, R.J.; Grimbleby, J.B.; Loader, R.J.; Kambhampati, C., 
"Modular embedded system for teaching real-time control," in Control, 

1994. Control '94. International Conference on , vol.1, no., pp.471-475 

vol.1, 21-24 March 1994 4 
[17] Benbasat, A.Y.; Morris, S.J.; Paradiso, J.A., "A wireless modular 

sensor architecture and its application in on-shoe gait analysis," 

in Sensors, 2003. Proceedings of IEEE , vol.2, no., pp.1086-1091 
Vol.2, 22-24 Oct. 2003 

[18] Diftler, M.A.; Mehling, J.S.; Abdallah, M.E.; Radford, N.A.; 

Bridgwater, L.B.; Sanders, A.M.; Askew, R.S.; Linn, D.M.; 
Yamokoski, J.D.; Permenter, F.A.; Hargrave, B.K.; Piatt, R.; Savely, 

R.T.; Ambrose, R.O., "Robonaut 2 - The first humanoid robot in space," 

in Robotics and Automation (ICRA), 2011 IEEE International 
Conference on , vol., no., pp.2178-2183, 9-13 May 2011 

[19] Desmet, H., “Engineering and reliability aspects of connectors in 

electronic system applications,” in Microelectronics and Reliability, 
Vol. 17, pp. 185-192, 1978 

[20] G. A. Pratt, M. M. Williamson, “Series Elastic Actuators”, MIT 

Artificial Intelligence Laboratory and Laboratory for Computer 
Science, 1995 

[21] Harris, A.; Katyal, K.; Para, M.; Thomas, J., "Revolutionizing 

Prosthetics software technology," in Systems, Man, and Cybernetics 
(SMC), 2011 IEEE International Conference on , vol., no., pp.2877-

2884, 9-12 Oct. 2011  

[22] Zongwu Xie; Jingdong Zhao; Jianbin Huang; Kui Sun; Genliang 
Xiong; Hong Liu, "DSP/FPGA-based highly integrated flexible joint 

robot," in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ 

International Conference on , vol., no., pp.2397-2402, 10-15 Oct. 2009 
[23] Duval, J-F., “FlexSEA: Flexible, Scalable Electronics Architecture for 

Wearable Robotic Applications,” Master’s thesis, Massachusetts 

Institute of Technology, Media Arts and Sciences 2015 
[24] Jose, M.A.; Martinazzo, A.A.G.; Biazon, L.C.; Ficheman, I.K.; Lopes, 

R.D.; Zuffo, M.K., "Power wheelchair open platform," in 2014 5th 

IEEE RAS & EMBS International Conference on Biomedical Robotics 
and Biomechatronics, vol., no., pp.455-460, 12-15 Aug. 2014 

[25] Duval, J-F.; Herr, H. M., “FlexSEA-Execute: Advanced Motion 

Controller for Wearable Robotic Applications,” Biomedical Robotics 
and Biomechatronics, 2016. BioRob 2016. 6th IEEE RAS/EMBS 

International Conference on, 26-29 Jun. 2016. In press. 


