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Abstract

Evidence from biomechanics research suggests that tendon series elasticity allows muscle to act in an optimal range of its force–length and
force–velocity curves to achieve work and power amplification. In this investigation we put forth a simple model to quantify the capacity of series
elasticity to increase work and power output from an actuator. We show that an appropriate spring constant increases the energy that an actuator
can deliver to a mass by a factor of 4. The series elasticity changes the actuator operating point along its force–velocity curve and therefore affects
the actuator work output over a fixed stroke length. In addition, the model predicts that a series spring can store energy and deliver peak powers
greater than the power limit of the source by a factor of 1.4. Preliminary experiments are performed to test model predictions. We find qualitative
agreement between the model and experimental data, highlighting the importance of series elasticity for actuator work and power amplification
across a fixed stroke length. We present several non-dimensional relations that can aid designers in the fabrication of robotic and prosthetic limbs
optimized for work and power delivery.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Biomechanists have noted that tendon series elasticity is
important for energetic and efficiency purposes [1–8]. Roberts
and Marsh [5] developed a simple model of a frog jumping
that showed the benefits of series elasticity on muscle work
output. They hypothesized that series elasticity changes the
operating velocity and set-point of the muscle belly for certain
tasks. In their model, total muscle work output while acting
to accelerate an inertial load is increased with the appropriate
series elasticity. Peak power delivered to the inertial load is also
increased. Given the appropriate elasticity, their model states
that the muscle-tendon unit was capable of greater power and
work output than the muscle alone.

Robotics researchers have noted the importance of series
elasticity for force control purposes [9–15] and also for energy
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storage and release during running or hopping [16–18]. In the
case of force control, the elasticity helps to reduce the output
impedance of the actuator and acts as a mechanical low-pass
filter for shocks. In the hoppers and runners, the elasticity
provides efficient energy storage and release, enhancing the
potential and kinetic energy exchange for such gaits.

In this paper we study how series elasticity affects
actuator work and power output. We present a simple model
that quantifies how series elasticity, actuator force–velocity
limitations and load impedance affect actuator work and
power output. Specifically, we are interested in how series
elasticity influences a source like an electric motor, which has
a force–velocity limitation but no force–length limitation.

We perform simulations of a mass being accelerated over a
limited stroke length. This is analogous to the task of jumping
from a crouched posture or throwing a ball from the chest. We
simulate two cases. In Case 1, we begin with a force–velocity
limited force source and simulate how much work is done on a
mass over a limited stroke length. In Case 2, we insert series
elasticity between the source and the load and, once again,
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Fig. 1. Case 1: a bandwidth limited force source with a limited stroke xin
throws a mass m. Subfigures 1 and 2 show the beginning and end stages
of the system launching an inertial load. Subfigure 3 shows the first-order
force–velocity limitation and the power output of the source. Pmax occurs at
Vmax/2 and is equal to FmaxVmax/4. This can also be thought of as a first-order
model of DC electric motor limitations. Subfigure 4 shows the linear bandwidth
limitation modeled as a perfect force source in parallel with a damper of
appropriate damping ratio, b = Fmax/Vmax.

simulate how much work the source does over a limited stroke
length. A series elastic actuator is constructed, and pilot data
are collected to compare with model predictions.

2. Simple models of actuator power and energy delivery

For Case 1, we consider a simple model to look at how
an actuator delivers energy to launch a mass. Here a linear
actuator is presented with a stroke length xin and some first-
order bandwidth limitations, specified by Fmax and Vmax. This
can also be represented as a perfect source in parallel with a
damper to ground, where b = Fmax/Vmax (see Fig. 1). This
limitation can be thought of as a first-order approximation of
the limitations of a DC electric motor, biological muscle or fluid
power source.

Consider the amount of energy that the actuator can impart
to a mass, m, over the stroke of the actuator. Assuming that
the mass starts at rest, the final energy is simply defined by the
velocity at x = xin . Here we examine the relationship between
m, b, Fmax, xin , and the exit velocity, v.

Our source can command the force, but the load will
determine the velocity. The optimal output (maximum power at
all times) from the actuator is simply the maximum force given
the velocity of the endpoint as determined by the interaction
with the load. We can model this using a perfect (i.e. not
velocity limited) force actuator in parallel with an appropriate
damper. Given a step input in force of magnitude Fmax, the
actuator always acts along the line defined by the force–velocity
limitation (Fig. 1, Part 3).

Consider the system in Fig. 1, part 4, when acted upon by a
step function of input force, Fmax. A single differential equation
defines the system dynamics:

mẍ = Fmax − bẋ . (1)

This equation can easily be solved for the time trajectories
of the mass:

x(t) = Vmaxt + Vmaxτ(−1 + e−t/τ ) (2)

ẋ(t) = Vmax(1 − e−t/τ ). (3)

Eqs. (1) and (2) can be combined to develop a relationship
between the actuator stroke and the exit velocity (energy of the
Fig. 2. Normalized energy delivery to a mass in Case 1. The x axis is the
normalized actuator stroke, x̄stroke. The y axis is the normalized energy of the
mass at the extent of the stroke, Ēm = E/0.5mV 2

max.

mass). By inverting the velocity equation to solve for t and then
plugging this back into the position equation, we find

t = −τ ln(1 − ẋ/Vmax)

x = −τ Vmax ln
(

1 −
ẋ

Vmax

)
− τ ẋ

τ =
m

b
=

mVmax

Fmax
(4)

x̄stroke = − ln(1 − ¯̇xexit) − ¯̇xexit (5)

where x̄stroke = x/
mV 2

max
Fmax

and ¯̇xexit = ẋ/Vmax. x̄stroke is the

normalized stroke length of the actuator. ¯̇xexit is the normalized
exit velocity of the mass. We can look more closely at this
dimensionless relation in Eq. (5). If Fmax increases, a shorter
stroke is required to reach a given velocity. If m increases, a
longer stroke is required. If Vmax increases, a longer stroke is
required. But this assumes that ¯̇xexit stays constant, meaning
that the exit velocity ẋ actually increases, since Vmax increased.

Fig. 2 shows the energy delivered (actuator work done) for a
given normalized stroke length, x̄stroke. The maximum possible
energy delivered as x̄stroke → ∞ is E = 0.5mV 2

max. In other
words, the velocity limitation of the actuator and the mass
define the ultimate limit of actuator work.

3. Adding series elasticity

For Case 2, we add a spring between the actuator and
the mass, as shown in Fig. 3. The actuator has the same
force–velocity limitation. For this case, we have simply added
a passive elastic element, with stiffness k, between the actuator
and the mass. We now have a second-order system that can
be represented with the state variables vmass and 1x . The
following relations govern the system:

1x = xmass − xsource

Fmax − bẋsource = −k1x
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Fig. 3. Case 2. Series elasticity is inserted between the actuator and the mass.
Subfigure 3 defines the actuator limitations and power output as in Case 1.
Subfigure 4 once again models the limited source as an unlimited force source
in parallel with an appropriate damper.

mv̇mass = −k1x

vmass = ẋmass.

Fmax is the perfect force source input and 1x is a measure of
the elastic element strain.

Choosing 1x and vmass as the state variables, we derive the
following transfer functions:

1x

Fmax
=

s

s2 +
k
b s +

k
m

(6)

vmass

Fmax
=

k
mb

s2 +
k
b s +

k
m

. (7)

To put k in dimensionless form, we normalize by b2/m.
This non-dimensional stiffness is related to the commonly
used dimensionless damping ratio (ζ ) parameter from system
dynamics:

k̄ =
k

b2/m
=

km

b2 =
1

4ζ 2 .

3.1. Simulation methods

State Eqs. (6) and (7) for the system were integrated using
lsim in MATLAB. This resulted in the state variables (and other
dependent variables) as a function of time. These time data
were then reordered into data based on source output position.
Simulations were run for a variety of values of k̄. The left graph
in Fig. 4 was created by stepping through values of x̄stroke and
selecting the maximum value of Ē of all the trials at different k̄
values.

3.2. Simulation results

Fig. 4 shows the actuator work as a function of various series
spring constants. For sufficiently large values of k̄, the system
is identical to Case 1. The right subfigure in Fig. 4 shows the
envelope of all the maximum energies as a function of x̄stroke. At
x̄stroke ≈ 0.5, Case 1 and Case 2 actuator work curves deviate.
In addition, k̄ >> 1 will not increase actuator work output over
any x̄stroke because we are approaching Case 1.

It is important to note that, for certain spring constants, there
will be potential energy in the spring at the extent of the actuator
travel. Here it is assumed that the actuator holds its position
at the point of maximum travel while the spring extends and
transfers all of its potential energy to the mass. Fig. 5 shows
the actuator force exerted on the spring–mass system as a
function of the actuator displacement. The area under the force
curve is a measure of the energy delivered to the spring–mass
system. This area is the total actuator work done (see Fig. 4).
In general, as x̄stroke increases, the optimal k̄ tends to decrease.
This relationship is shown in Fig. 6.

3.3. Catapults

Is the spring in Case 2 acting like a catapult? We define a
catapult as a system where a limited power source injects a
certain amount of energy into a spring (winds it up) and then the
spring releases that energy at a rate higher than the source can
produce. Fig. 7 shows the motor power and the spring output
power to the mass. There is a slight power amplification for
certain values of k. This peaks at k = 2 and the amplication
is roughly 1.4 or

√
2. For our model, we also assume that the

actuator force and power will never be negative. The mass will
simply be released before the end of travel.

Here we describe a simple model to extend this work
to examine another catchless catapult. Consider the energy
delivered with a wind-up and throw. This is analogous to an
athlete bringing a ball backwards in order to wind-up before
throwing the ball forward. The kinetic energy of the ball moving
backwards is put into stretching the tendons. Then, as the
athlete swings his arm forward, the stored energy in the tendons
and additional muscle work propels the ball forward. If timed
correctly, energy can be put into the tendons in both directions.
Also, the second half of the motion will be on a different portion
of the force–velocity curve. Fig. 8 shows an example of a wind-
up and throw. The level of power amplification would depend
on relative component values and the number of wind-ups. In
the end, the peak actuator force will limit the number of wind-
ups before the source will no longer be able to impart more
energy into the spring mass system.

4. Work and power amplification experiments

Preliminary experiments were performed to evaluate the
model. A diagram of the experimental setup is shown in Fig. 9.
A photo of the apparatus can be seen in Fig. 10. The mechanical
portion of our test setup consists of a series elastic actuator
that uses a Maxon RE-40 brushed DC motor with a 13/3
gearhead, a 500 count shaft encoder, two equal timing pulleys,
and a NSK 10 mm × 4 mm ballscrew. The actuator is similar
in physical layout to those described in Robinson et al. [19].
The actuator has a stroke length of 0.07 m (2.8 in.). The
series springs are several different die springs. The actuator
is mechanically grounded and pushes on a platform which is
guided and supported by linear recirculating ball bearings. The
platform weighs 10 kg (21 lbs).

Our electronics and control system is based around a PC/104
(Advanced Digital Logic) running the MATLAB XPC real-time
operating system. There is an additional board (Sensoray) that
provides an encoder counter, digital to analog (D/A) and analog
to digital (A/D). The PC/104 system communicates the desired
motor current to a motor amplifier (Copley Controls Accelus
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Fig. 4. Normalized energy delivery to a mass in the case with series elasticity. The x axis is the normalized actuator stroke, x̄stroke. The y axis is the normalized
energy of the mass at the extent of the stroke, Ēm . The energy delivery is plotted for various values of dimensionless series elasticity, k̄. As k̄ becomes large, the plot
approaches Case 1. The figure on the right shows the maximum energy envelope, Ē , given the stroke x̄stroke. As k̄ decreases and x̄stroke increases, Ē → 4.
Fig. 5. The force vs time, as seen by the source for various values of k. When
k gets large, the plot approaches Case 1.

Fig. 6. This figure shows the optimal relationship (for total work output)
between the dimensionless stiffness, k̄, and the dimensionless stroke length,
x̄stroke. 1

x̄stroke
is shown for reference.

Model). The PC/104 I/O board receives input from the motor
encoder and an analog signal conditioning board that buffers the
signal from the analog linear potentiometer. The system runs at
a frequency of 3000 Hz. Data is decimated and recorded at a
rate of 300 Hz.
In the experiment, two distinct series springs were selected
between 1 < k̄ < 2, namely k̄ = 1.1 and k̄ = 1.4. For each k̄
value, several trials were run. Here, a trial consisted of giving a
maximal step input to the motor amplifier and recording the
sensor data as the actuator performed work throughout one
maximal stroke. Data were also taken with no series elasticity.

The data from each trial were transferred over Ethernet from
the PC/104 board to a desktop computer, where it was further
processed in MATLAB. Position data were low-pass filtered at
100 Hz. The force applied to the output mass was calculated
in two ways. First, using the spring deflection, the force was
calculated as kxspring. In addition, in order to check the accuracy
of published spring ratings, the force was also calculated by the
taking the second derivative of the mass position.

The results of the experiments are shown in Fig. 11. In
Fig. 11, the series elasticity produced a power amplification of
≈1.3 times that of the direct drive case. In addition, Fig. 11
shows that the series elastic cases provided ≈3 times the work
output compared to the direct drive case.

5. Discussion and future work

In both numerical simulation and experiments, we show that,
for a particular level of series elasticity, amplification of work
and power can be achieved for the action of accelerating a
mass over a fixed stroke length. Using a simplified model, we
show that an appropriate spring constant increases the energy
that an actuator can deliver to a mass by a factor of 4. The
series elasticity changes the actuator operating point along its
force–velocity curve and therefore affects the actuator work
output over a fixed stroke length. In addition, the model predicts
that a series spring can store energy and deliver peak powers
greater than the power limit of the source by a factor of 1.4.

Preliminary experiments are performed to test model
predictions. We find qualitative agreement between the model
and experimental data. The series elastic trials provided ≈3
times the work output compared to the direct drive case. The
series elasticity trials also produced a power amplification of
≈1.3 times that of the direct drive case.

The model and experimental results highlight the importance
of series elasticity for actuator work and power amplification
across a fixed stroke length.



D. Paluska, H. Herr / Robotics and Autonomous Systems 54 (2006) 667–673 671
Fig. 7. Power output from the source and from the spring to the mass. Both powers are plotted as a function of time and normalized by the peak actuator power.
The thick line corresponds to k = 0.1.
Fig. 8. A time sequence indicating how series elasticity can be used as
a catchless catapult to increase energy delivery to a mass. This figure is
diagramatic only and the actual x(t) would differ depending on parameters.

5.1. Work output and actuator force–velocity characteristics

Fig. 12 is a diagram illustrating how the actuator force as a
function of time differs for the direct drive and series elastic
cases. It is critical to note that series elasticity changes the
operating velocity of the actuator. Consider the force–velocity
limited actuator as shown in Figs. 1 and 3. Intuition might lead
one to believe that the maximum work output can be achieved
by operating at Pmax over the entire actuator stroke (given some
idealized matched load). At Pmax = FmaxVmax/4, the speed is
Vopt = Vmax/2, and the work done, E , over the stroke, xin , is
then:

E = P ∗ t = Pmaxxin/Vopt = Fmaxxin/2 = f ∗ d. (8)

Fig. 5 is the actual force versus displacement for the source.
The area under these curves is the total work delivered to the
Fig. 10. A photograph of the experimental apparatus.

spring–mass load (see Fig. 4). Thus, work amplification occurs
when the series elasticity allows the source to operate near Pmax
for a larger portion of the stroke.

5.2. Future work

There are many ways in which the simple model presented
here can be improved. In order to better relate to biologi-
cal or specific mechanical systems, additional issues need to
be modeled, including actuator output mass, nonlinear (hard-
ening) series elasticity, nonlinear force–velocity limitations,
force–displacement limitations and actuator efficiency.

The results of this study highlight the need for better actuator
metrics. Currently, actuators are often evaluated by their power
density. Although the addition of a spring can increase peak
Fig. 9. A schematic of the experimental setup.
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Fig. 11. Power output from the source and from the spring to the mass. Both powers are plotted as a function of time and normalized by the peak motor power. See
also Fig. 7 for comparison with model results.
Fig. 12. This is a cartoon figure indicating how the two cases load the actuator
in different ways. Of course, as k varies, the profile for Case 2 will change. For
large k, the two should be essentially identical. F1(t) and F2(t) here are cartoon
representations of the actual force profile, as seen in Fig. 5. The dotted curve
indicates the actuator power output. For a fixed amount of time, we would like
to operate near Vmax/2 for as long as possible.

power or work output for short amounts of time, the steady-
state power density will always be limited by the original value
of the source. We believe that there are new actuator metrics
to be defined which will better represent the power and work
amplification capabilities offered by series elasticity.

6. Conclusion

In both simulation and experiment, we show that series
elasticity can amplify actuator work and power output over
a limited stroke length. Series elasticity is an integral part of
robot morphology which directly affects the system energetics
and control. The effect is of critical importance to jumping
and throwing robots, where minimizing limb mass while
maximizing work and power output is desirable. We believe
that artificial joint designs and control systems that exploit
this effect will lead to artificial systems that can more closely
approximate the performance of biological systems.
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