
Abstract—Although below-knee prostheses have been 
commercially available for some time, today’s devices are 
completely passive, and consequently, their mechanical 
properties remain fixed with walking speed and terrain. To 
improve the current performance of below-knee prostheses, we 
study the feasibility of using the amputee’s residual limb EMG 
signals to control the ankle position of an active ankle-foot 
prosthesis.  We propose two control schemes to predict the 
amputee’s intended ankle position: a neural network approach 
and a muscle model approach.  We test these approaches using 
EMG data measured from an amputee for several target ankle 
movement patterns. We find that both controllers demonstrate 
the ability to predict desired ankle movement patterns 
qualitatively.  In the current implementation, the biomimetic 
EMG-controller demonstrates a smoother and more natural 
movement pattern than that demonstrated by the neural 
network approach, suggesting that a biologically-motivated, 
model-based approach may offer certain advantages in the 
control of active ankle prostheses. 

I. INTRODUCTION

lthough the potential benefit of powered prostheses for 
both upper and lower extremity amputees has been 

well documented, most of the research and commercial 
activity has focused on active upper limb devices [1]-[4].  
Today, commercially available ankle-foot prostheses are 
completely passive, and consequently, their mechanical 
properties remain fixed with walking speed and terrain [5].  
In distinction, normal human ankle stiffness varies within 
each gait cycle and also with walking speed [6][7].  
Furthermore, some studies have indicated that one of the 
main functions of the human ankle is to provide adequate 
energy for forward progression of the body [6]-[8]. Not 
surprisingly, below-knee amputees that use passive ankle-
foot prostheses exhibit non-symmetric gait patterns and 
higher metabolic ambulatory rates [5].  Thus, in order to 
mimic the behaviour of the human ankle and to increase gait 
symmetry and walking economy, a prosthetic ankle-foot 
device should be able to actively control joint impedance, 
motive power, and joint position. 
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 When developing an active ankle-foot prosthesis, a key 
challenge that needs to be addressed is how to measure and 
respond to the amputee’s movement intent.  For some time, 
researchers have attempted to use electromyographic (EMG) 
signals measured from the residual limb as control 
commands for an external prosthesis [9]-[13]. However, 
most of these systems only provide discrete or binary levels 
of motion control whereas daily activities require a 
continuous limb movement control.   

The main difficulty with using EMG signals as the 
continuous control command for prostheses is the non-linear 
and non-stationary characteristics of EMG sensory 
information [10]. Some researchers have applied neural 
networks to solve this problem because such networks can 
acquire nonlinear mappings of data [10]-[12]. However, 
when using such an approach, it is not clear whether the 
prosthesis will behave in a manner comparable to a natural 
human limb.  For these reasons, some researchers have 
developed EMG-controllers for prostheses and 
exoskeletons, based on neuromuscular control models of 
human limbs [13]-[15]. Researchers have argued that this 
class of controller could allow the amputee to experience a 
more subconscious control over the prosthetic limb, and 
consequently, the amputee might require a much shorter 
time period to learn how to operate the prosthesis compared 
with a control model that does not explicitly model 
biological limb dynamics.  

 In this paper, we propose two EMG-controllers for an 
active ankle-foot prosthesis: a biomimetic muscle model 
approach and a neural network approach. We specifically 
address the problem of position control of an active 
prosthetic ankle joint.  Active ankle position control is one 
of the most basic functionalities of the human ankle. It 
allows for foot clearance during the swing phase and 
maintains proper landing of the foot during foot-strike [16].  
We evaluate and compare the performance of these two 
approaches based on EMG signals measured from an 
amputee for various target ankle movement patterns.  We 
anticipate that the biomimetic EMG-controller will 
demonstrate a smoother and more natural movement pattern 
as compared to the neural network approach.   Experimental 
data are used to train each model, and then using an 
independent data set, model predictions are compared with 
desired ankle movement patterns. 

An EMG-position controlled system for an active ankle-foot 
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II. EMG CONTROLLER DESIGN

In this study, the purpose of the EMG-controller was to 
estimate the intended ankle movement of an amputee 
according to measured EMG signals.  In the following 
section, we propose two EMG-controllers that are based on 
biomimetic and neural network approaches.  With these 
controllers, the prosthesis predicts the amputee’s movement 
intent, or the desired ankle trajectory, based on EMG signals 
measured from the residual limb.  

A. Biomimetic EMG-controller 
A biomimetic EMG-controller is a controller that obtains 

the estimation of the amputee’s motion intent by simulating 
the dynamics of the missing limb’s neuromuscular system 
[10].  In this study, we formulated a neuromuscular model 
that describes the human ankle joint.  The model is shown in 
Figure 1.  To simplify the model, we focused only on the 
dynamics of the ankle joint for sagittal plane movements, 
since in normal walking, the majority of ankle movement 
occurs in that plane.  We modelled the human ankle as a 
revolute joint with one degree of freedom.  The foot was 
modelled as a rectangular box of mass m  and length l ,
attached to the shank (fixed) through the revolute joint. 

In Fig. 1, muscles A1 and A2 represent effective plantar 
flexor and dorsiflexor muscles, respectively.  For simplicity, 
these muscles attach to the foot at fixed moment arm r .
Since the knee was held in a fully extended posture during 
experimentation, and the Gastrocnemius and Soleus were 
activated at the same time (section Experimental Setup, Fig.
5), we modelled the Gastrocnemius and Soleus as one 
effective muscle.  Since there are many ligaments, tendons 
and tissues that act about the human ankle, we included 
passive damping and stiffness in the model. The general 
dynamic model for the human ankle is described in Equation 
(1), and the corresponding notations are listed in Table 1.   
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Fig. 1.  A model of the human ankle-foot system.

From the literature, it has been stated that ankle joint 
stiffness dynamically changes throughout each gait cycle 
[6].   To capture this essential behaviour, a bilinear muscle 
model was used in which the slope of the muscle force-
length curve varied proportionally with activation level.  It is 
also noted that when transitioning from terminal stance to 

swing, ankle rotational velocity is sufficiently large in 
walking. In the model’s development, it was therefore 
decided that muscle force-velocity behaviour should not be 
ignored.  In the bilinear muscle model, the force-velocity 
characteristic was considered as linearly dependent on 
activation level.   

The bilinear muscle model is defined as: 
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where

eqx    = Isometric muscle length 

 = Activation level 
x   = Actual muscle trajectory 

okk,  = Muscle stiffness factor and offset, respectively 

obb,  = Muscle damping factor and offset, respectively 
bF  = Muscle force. 

Using the bilinear muscle model, the overall dynamics of 
the ankle model are: 
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Variable definitions are listed in Table 1. 
Since muscle parameters have been shown to vary from 

person to person, it was necessary to set model parameters 
on the basis of experimental data collected from the amputee 
subject.  Given EMG signals and the corresponding desired 
ankle-foot trajectory, we estimated the parameter values 
using the Matlab Optimization Toolbox.   

TABLE 1 SUMMARY OF NOTATION
Variables  Definitions 

,, Angular position, velocity, and acceleration of 
the human ankle, respectively. Joint position is 
zero when the foot is perpendicular to the shank. 

dp FF , Muscle forces generated by the effective plantar 
flexor and dorsiflexor, respectively. 

dd xx , Muscle length and contraction velocity for the 
effective dorsiflexor, respectively. 

pp xx , Muscle length and contraction velocity for the 
effective plantar flexor, respectively. 

dp , Muscle activation level for the effective plantar 
flexor and dorsiflexor, respectively. 

r Moment arm about the ankle joint. 

KB, Stiffness and damping factors for the ankle joint, 
respectively (due to the passive tissues around 
the ankle). 

odd kk , Muscle stiffness factor and offset for the 
effective dorsiflexor, respectively. 

opp kk , Muscle stiffness factor and offset for the 
effective plantar flexor, respectively. 

odd bb , Muscle damping factor and offset for the 
effective dorsiflexor, respectively. 

opp bb , Muscle damping factor and offset for the 
effective plantar flexor, respectively. 

eqpeqd xx ,, , Isometric muscle lengths for the effective 
dorsiflexor and plantar flexor, respectively. 
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B. Neural Network EMG- Controller 
A standard multi-layer, feedforward neural network was 

adopted in this controller.  The structure of the network was 
20-30-1 and was determined experimentally. The transfer 
function used in the input layer was a hyperbolic tangent 
sigmoid function while linear transfer functions were 
applied in both the hidden and output layers.  The network 
was trained using a standard back-propagation algorithm.  
The inputs and output of the network were pre-processed 
EMG signals from the residual muscles and the estimated 
ankle position, respectively.   

III. EXPERIMENT AND DISCUSSION

A. Experimental Setup 
To obtain the input-output training data for the EMG 

controllers, we developed an ankle-foot training platform to 
allow an amputee to learn how to control an active 
prosthetic ankle using residual limb muscle activity.  Here a 
training platform was used to communicate desired ankle 
positions and stiffnesses to the amputee.  Fig. 3 and Fig. 4 
depict the experimental setup and the ankle-foot graphical 
display of the EMG training platform.  EMG signals were 
measured and sampled at 1080Hz through the DAC (PC-
CARD-DAS16/16-AO) to a laptop computer.  The graphical 
display and the rest of the software were developed using 
the Virtual Reality Toolbox and the Realtime Window 
Target of Matlab.  

 During the experiment, the amputee subject controlled 
the residual muscles, which previously actuated his ankle, to 
mimic pre-programmed motion trajectories of the graphical 
display.  Here we assumed that the amputee’s intended 
ankle-foot trajectory coincided with the desired ankle-foot 
trajectory defined by the graphical display.   

Fig. 3.  The experimental setup. 

Fig. 4.  The graphical display of the ankle-foot training platform.  In the 
display, the green sphere and lower rectangle represent the human ankle and 
foot, respectively.  The colour bar communicates desired ankle stiffness. 
During the experiment, the foot moves to communicate desired ankle-foot 
movement patterns to the amputee.  

B. EMG Signal Processing 
Since the goal of this investigation was to develop an 

EMG-controlled, ankle-foot prosthesis that mimics natural 
human ankle movements, it was desirable to measure EMG 
signals from those residual limb muscles that previously 
actuated the biological ankle before amputation.  Thus, 
using fine wire electrodes (Motion Lab Systems, Inc), we 
recorded from the Gastrocnemius and Soleus muscles for 
prosthetic ankle plantar flexion control, and from the 
Tibialis Anterior for prosthetic ankle dorsiflexion control.  
Signals were amplified and sampled at 1080 Hz. 

 We pre-processed the raw EMG signals before their 
use as control commands. The raw EMG data were rectified, 
low-passed filtered, and normalized with respect to the 
maximum voluntary contraction (MVC) level of the 
amputee [10].  A 7th order Butterworth low-pass filter with a 
cut-off frequency of 5 Hz was adopted.  After normalization, 
the pre-processed EMG signals were within the range of 
[0,1], where a value of 1 represented the maximal voluntary 
muscle activation. Fig. 5 shows the pre-processed EMG 
signals measured from the residual muscles when the 
amputee tracked a sequence of consecutive plantar flexion 
(negative angle) and dorsiflexion (positive angle) movement 
patterns depicted by the graphical display.  As expected, the 
Gastrocnemius and Soleus EMG signals were active during 
plantar flexion, while the Tibialis Anterior EMG signal was 
active during dorsiflexion.  It is noted here that since the 
knee was held in a fully extended posture, both the 
Gastrocnemius and Soleus muscles were active, but the 
mean amplitude of EMG signal from the Gastrocnemius was 
much larger than that from the Soleus. 

Fig. 5.  Preprocessed EMG signals from the amputee's residual limb. 
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C. Results 
We conducted a series of experiments with the ankle-foot 

training platform on a below-knee amputee.  In these 
experiments, the preprogrammed motion trajectories of the 
graphically depicted ankle-foot comprised a sequence of 
plantar flexion movements (step response), sinusoidal 
movements of various frequencies, and random movements.  
Using the recorded data, we constructed the biomimetic and 
neural network EMG-controllers for the amputee.  

Based on these offline-EMG data, we evaluated the 
controllers.  Fig. 6 shows model predictions for a sequence 
of plantar flexion movements at 0.5Hz. Both controllers 
demonstrated the ability to predict ankle movement 
qualitatively as their predicted trajectories have a similar 
profile compared with the desired trajectories from the 
graphical display.  Fig. 7 shows the ankle joint trajectory of 
a healthy subject following the same desired ankle-foot 
movement patterns depicted from the graphical display. 

Fig. 6.  Prediction of ankle joint position. 
The biomimetic EMG controller appeared to generate a 

smoother, more natural ankle movement pattern than the 
neural network EMG-controller.  Using frequency analyses 
on ankle trajectories, we found that the average frequency 
for normal human ankle movements was 4.5Hz ± 0.5Hz 
similar to that found for the bilinear controller output 
trajectory, or 5.4 ± 0.2Hz. Conversely, the average 
frequency for the neural network controller was one-fold 
greater, or 10.5 ± 0.5Hz. Thus, the trajectories generated by 
the biomimetic controller were found to be smoother than 
those trajectories generated by the neural network controller.  
This apparent difference between the controllers was 
perhaps due to the fact that the integrators in the biomimetic 
controller were acting as low-pass filters to smooth the 
corresponding ankle trajectory estimate. 

A key assumption in this investigation was that the 
amputee’s intended ankle-foot trajectory should closely 
coincide with the graphically-depicted ankle-foot trajectory 
(Fig. 4).  However, based on the control experiment with the 
normal subject, we found that even a healthy biological 
ankle-foot could not accurately follow the desired ankle-foot 
movement patterns from the display (Fig. 7).  To alleviate 
this problem, in future investigations human ankle kinematic 

data will be graphically displayed as desired ankle 
trajectories. In addition, in this investigation we did not 
address the problem of temporal variations in EMG patterns 
due to muscle fatigue or other factors.  These issues suggest 
a need for real-time learning algorithms for EMG-based 
controllers that compensate for variations in muscle 
response.

Fig. 7.  A healthy subject follows the desired ankle-foot movement: (a) 
actual ankle trajectory vs. desired ankle-foot trajectory, and (b) EMG 
signals. 

IV. CONCLUSION

In this investigation, we evaluate both biomimetic and 
neural network control approaches for predicting ankle 
movement intent from EMG information measured from the 
residual limb of an amputee.  We find that both controllers 
demonstrate the ability to predict desired ankle movement 
patterns qualitatively.  In the current implementation, the 
biomimetic EMG-controller demonstrates a smoother and 
more natural movement pattern compared with the neural 
network approach, suggesting that a biologically-motivated, 
model-based approach may offer certain advantages in the 
control of active ankle prostheses.  In future studies, we plan 
to develop real-time learning algorithms for EMG 
controllers where the system adapts to variations in EMG 
temporal patterns.  In addition, EMG controllers that employ 
vibro-tactile afferent feedback to the amputee will be 
investigated. 
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