
Body size has a profound impact on many aspects of animal
physiology and ecology, including locomotion (Schmidt-
Nielsen, 1984; Calder, 1996). On a mass-specific basis, small
animals use stiffer legs (Farley et al., 1993) and more
metabolic energy (Taylor et al., 1970) than large animals to run
a given distance. At their lowest galloping speeds, small
mammals sweep through larger hindlimb excursion angles
(McMahon, 1975) and use greater stride frequencies (Heglund
et al., 1974) than large mammals. These data can be used to
test models that relate body design to performance on the basis
of assumptions of muscle mechanics and anatomical scaling.
For example, a model of geometric similarity, in which all
linear dimensions of the body change by the same scale factor,
makes predictions of gait performance versussize (Hill, 1950).
Although this structural assumption has support over a wide
range of species (Alexander et al., 1979; Biewener, 1983),
some of the gait predictions are inconsistent with the data
(McMahon, 1975). In contrast, the model of elastic similarity,
in which lengths and diameters of the body scale differently,

predicts gait data more successfully (McMahon, 1973, 1975),
but its structural assumptions hold only among closely related
species (Alexander et al., 1979; Alexander, 1988).

To capture the diversity of animal design and locomotory
performance, more detailed models of morphology,
musculoskeletal mechanisms and motor control are needed
(Full and Koditschek, 1999; Kubow and Full, 1999). Here, we
develop a model of running that is based on the body structure
and stride-to-stride dynamics of a variety of quadruped species.
This work builds upon recent computer simulations of a
running horse (Herr and McMahon, 2000, 2001) by extending
the theory to animals of different size.

The broad aim of this work is to explain how the extensive
data on locomotory scale effects are related. It is not fully
understood, for example, how the size-dependence of leg
stiffness and limb excursion angle in trotting and galloping
quadrupeds may be related to the size-dependence of the
metabolic cost of transport. Here, we hypothesize that a single,
integrative model of mechanics, control and energetics can
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Although the effects of body size on mammalian
locomotion are well documented, the underlying
mechanisms are not fully understood. Here, we present a
computational model of the mechanics, control and
energetics that unifies some well-known scale effects in
running quadrupeds. The model consists of dynamic,
physics-based simulations of six running mammals
ranging in size from a chipmunk to a horse (0.115–676 kg).
The ‘virtual animals’ are made up of rigid segments
(head, trunk and four legs) linked by joints and are
similar in morphology to particular species. In the model,
each stance limb acts as a spring operating within a
narrow range of stiffness, forward motion is powered and
controlled by active hip and shoulder torques, and
metabolic cost is predicted from the time course of
supporting body weight. Model parameters that are
important for stability (joint stiffnesses, limb-retraction
times and target positions and velocities of the limbs) are

selected such that (i) running kinematics (aerial height,
forward speed and body pitch) is smooth and periodic and
(ii) overall leg stiffness is in agreement with published
data. Both trotting and galloping gaits are modeled, and
comparisons across size are made at speeds that are
physiologically similar among species. Model predictions
are in agreement with data on vertical stiffness, limb
angles, metabolic cost of transport, stride frequency, peak
force and duty factor. This work supports the idea that a
single, integrative model can predict important features of
running across size by employing simple strategies to
control overall leg stiffness. More broadly, the model
provides a quantitative framework for testing hypotheses
that relate limb control, stability and metabolic cost.
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quadruped, body size, leg stiffness, metabolic cost of transport,
computational model, limb control.
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predict how important features of running change with size in
mammalian quadrupeds. To test the hypothesis, we conduct
computational experiments on six morphologically realistic
animal models (‘virtual animals’) ranging in size from a
chipmunk (0.115 kg) to a horse (676 kg). Each virtual animal
trots and gallops in numerical simulations using the following
set of biologically plausible strategies, to be justified below: (i)
each stance limb acts as a linear spring of constant stiffness
(Cavagna et al., 1988; Blickhan, 1989; McMahon
and Cheng, 1990); (ii) forward motion is powered
and controlled by active hip and shoulder torques;
and (iii) metabolic cost is predicted from the time
course of supporting body weight (Kram and Taylor,
1990). With overall leg stiffness constrained by
published experimental data (Farley et al., 1993), we
select model parameter values such that the virtual
animals remain upright and the running kinematics
is smooth and periodic. Finally, we test the model for
internal consistency by comparing the simulation
results with available experimental data. We would
reject the model’s set of assumptions if we were to
find discrepancies between predictions and data (e.g.
in metabolic cost).

To summarize, we ask whether there exists a set
of biologically plausible locomotory principles that,
when specified in the formulation of our model,
unifies well-known features of quadrupedal trotting
and galloping across body size. It is our belief that
answering this question will be a step towards
identifying mechanisms of gait performance in a
wide variety of terrestrial mammals and, ultimately,
a more unified theory of locomotory mechanics,
control and energetics.

Materials and methods
Model structure

Six virtual animals were constructed to simulate
the stride-to-stride running dynamics of two horses
(676 kg and 134 kg), a goat (25.2 kg), two dogs
(23.9 kg and 5.09 kg) and a chipmunk (0.115 kg)
(Fig. 1). Each virtual animal consisted of 11 rigid
body segments connected by joints: three segments
for the head and trunk, and two segments for each
leg. The legs were connected to the trunk at shoulder
and hip pin joints, enabling each limb to rotate in the
sagittal plane. As back and neck flexion is observed
in running quadrupeds (Muybridge, 1957) and since
these motions affect the mechanics of running
(Alexander, 1985, 1988), back and neck joints were
included in the model. The head was free to rotate
about a pin joint located at the base of the neck, and
a back pin joint was located half-way between the
tail base and the caudal aspect of the rib cage, where
spine flexion is maximal (Alexander, 1985).

Similar to the horse model of Herr and McMahon

(2000, 2001), each limb was formed with an upper and a lower
segment connected by a prismatic (telescoping) joint such that
the limb could change length. The simplifying assumption of
prismatic joints for the elbows and knees was justified because
the quadruped limbs were lightweight (limb mass <7 % of total
body mass) (Fedak et al., 1982), so that hip and shoulder
torques to accelerate each limb were small compared with
those required to sustain forward running. Consequently, errors
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Fig. 1. Model structure: (A) large horse, (B) small horse, (C) goat, (D) large dog,
(E) small dog and (F) chipmunk. Joint locations, segment dimensions and mass
distributions are from photographic, video and anatomical data (Muybridge,
1957; Taylor et al., 1974; Fedak et al., 1982; Alexander, 1985; Farley et al.,
1993). All segments are represented as rigid bodies. Pin (rotary) joints are
included on the back and neck. Each leg rotates about a pin joint at the shoulder
or hip and changes length through a prismatic (telescoping) joint at the elbow or
knee. Active hip and shoulder torques control the forward motion from stride to
stride. Motions are restricted to the sagittal plane.
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in limb moments of inertia from the prismatic assumption led
to negligible errors in total torque output.

For this study, we did not use an average quadrupedal form;
rather, the virtual animals were given mass distributions and
shapes similar to those of particular species. Joint locations and
segment lengths were measured from the animal photographs
of Muybridge (1957) or, in the case of the chipmunk model,
from video camera images (200 frames s–1) of a running
chipmunk. The back flexion point, hip-to-shoulder distance,
neck and head lengths, shoulder-to-elbow distance and hip-to-
knee distance were all measured from photographic or video
images and normalized to leg length. The back flexion point
was measured by estimating the midway point between the tail
base and the caudal aspect of the rib cage. The shoulder-to-hip
distance was measured from a point midway between the
greater tubercle and the dorsal aspect of the scapula and the
greater trochanter of the femur. The distance from the elbow
to the shoulder point and the distance from the knee to the hip
point were also measured from the animal images.

These dimensionless sagittal-plane lengths were then
multiplied by the animal’s leg length. Leg lengths were taken
from the literature (Fedak et al., 1982; Farley et al., 1993),
except for the large horse’s leg length, which was measured
directly on a horse specifically for the study. Each leg length
was computed using the protocol of Farley et al. (1993) by
taking the average of the forelimb and hindlimb lengths at
first contact in trotting. The forelimb length was taken as the
distance from the foot to a point midway between the greater
tubercle and the dorsal aspect of the scapula and the hindlimb
length as the distance from the foot to the greater trochanter of
the femur. Mass was distributed throughout each virtual animal
in a realistic manner using data from the literature (Taylor et
al., 1974; Fedak et al., 1982). The lateral thicknesses of the
trunk, neck and limbs were computed using the mass of each
segment, the sagittal-plane lengths and the volume formula for
each segment shape.

Biological assumptions of the model

For the virtual animals to be viewed as plausible biological
representations, three main assumptions were made
irrespective of size and gait. First, each limb behaved as a
linear spring of constant stiffness throughout each ground-
contact phase in running. During stance, a limb changed length
through a passive telescoping joint whose stiffness was linear
and invariant with time. The support for this assumption
includes linear measurements of force versusdisplacement in
mammalian limbs and agreement of bouncing spring-mass
models with gait data (Cavagna et al., 1988; Blickhan, 1989;
McMahon and Cheng, 1990; Blickhan and Full, 1993).
Second, forward motion was controlled by active torques about
the proximal leg joints (hips and shoulders); these torques were
the only energy input to the model during stance. This
assumption was made to achieve a simple control scheme that
was biologically realistic. Anatomical descriptions of limb
musculature and measurements of ground-reaction forces from
trotting dogs are consistent with this assumption (Gray, 1968;

Lee et al., 1999). Third, metabolic cost of running was
predicted from the cost of supporting body weight and the time
course of generating that force. This last assumption was based
on evidence that, during running, the metabolic rate is
inversely proportional to the time per stride that a given foot
contacts the ground (Kram and Taylor, 1990). It allowed
metabolic costs to be calculated from the kinematics of the
virtual animal simulations. There are other approaches for
estimating the metabolic cost of locomotion on the basis of
external mechanical work (Taylor et al., 1982; Full, 1989;
Donelan et al., 2002); we used the rule of Kram and Taylor
(1990) because of its simplicity and because it was tested on
species similar to those in this study.

Gaits

Two distinct quadrupedal gaits were modeled: trotting and
galloping. During trotting, diagonal pairs of limbs moved
approximately in concert, with one pair on the ground at a time.
During galloping, which was used at higher speeds, the four
limbs touched the ground sequentially during each contact
period. The present model did not attempt to explain why a
particular gait was used at a given speed. Rather, for each
speed, experimental observations were used to select the
relevant gait. Interspecies comparisons were made at
physiologically equivalent speeds (Heglund et al., 1974)
(Table 1). For trotting, model predictions and measurements
were compared near the midpoint of each animal’s natural
range of trotting speeds, with similar Froude numbers and duty
factors occurring among species (Alexander, 1988; Heglund
and Taylor, 1988; Farley et al., 1993). The Froude number was
defined as u/(gL0)1/2, where u is forward speed (averaged over
a stride), g is gravitational acceleration and L0 is leg length.
Duty factor was defined as the percentage of a stride period
during which a foot was on the ground. For galloping,
comparisons were made at each animal’s lowest galloping
speed, i.e. its trot–gallop transition speed (Heglund et al., 1974;
Heglund and Taylor, 1988).

Model control implementation

The dynamics of trotting and galloping were simulated by
programming motor control into the model structures, subject
to the laws of Newtonian mechanics. A commercially available
software package (SD/Fast, Symbolic Dynamics Inc.) was
employed to generate and integrate the non-linear equations of
motion using a fourth-order Runge–Kutta method (0.4 ms time
step). Local software enabled communication between the
control algorithms and SD/Fast to determine the forces and
torques commanded to the joints. All running simulations were
two-dimensional, operating within the sagittal plane. Yaw and
roll degrees of freedom were neglected.

Parameter definitions

For the virtual animals to trot and gallop in numerical
simulation, mechanical and kinematic control parameters
needed to be defined (see Table 1 for key parameters). The
mechanical parameters were the stiffnesses of the limbs (at the
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telescoping joints), back and neck during ground contact. These
passive properties, which were fixed for the duration of ground
contact (the first assumption of the model), helped to determine
the behavior of each virtual animal as it rebounded from the
ground during trotting and galloping. The kinematic control
parameters were target limb-retraction speeds and gains, aerial
position and velocity gains, target joint positions and limb-
retraction times. To control forward running speed in trotting
or galloping, torques were applied about the hip and shoulder
(the second assumption of the model) such that the tangential
velocity component of each foot, measured relative to each
foot’s proximal hip or shoulder joint, was sustained. The target
limb-retraction speeds were the desired tangential velocities of
the feet relative to the hip and shoulder during ground contact.
There were two target speeds, one corresponding to the
forelimbs and a second corresponding to the hindlimbs. Foot
velocity was computed by multiplying the virtual animal’s leg
length by the angular velocity of the hip or shoulder joint
measured relative to the trunk. The applied torque was set
proportional to the difference between a measured tangential
velocity component and a target limb-retraction speed. To
control forward speed in trotting and galloping simulations, this
proportionality constant, or gain, was defined together with two
limb-retraction speeds corresponding to the fore- and hindlimbs
(Herr and McMahon, 2000, 2001).

During each aerial phase, conventional proportional-plus-
derivative (PD) controllers (Nise, 1995) (pp. 460–469) were
used to position the hip, shoulder, back and neck joints to
desired angular positions relative to the model trunk in
preparation for landing. PD controllers were also used to
shorten the limbs for foot clearance and then to lengthen the
limbs for landing. Here, the force or torque applied to a joint
was proportional to errors in position and velocity.

After achieving a desired position, each limb retracted just
before striking the ground. Retraction times were set by an
internal clock (analogous to a neural pattern generator) that
determined how the limbs were phase-locked in a trot or
gallop. Throughout this paper, limb retraction is defined as a
backward displacement of the foot by means of rotating a limb
about the hip or shoulder joint within the sagittal plane (Gray,
1968). In trotting simulations, a diagonal limb pair began to
retract towards the ground after a fixed time interval from the
beginning of the aerial phase. In galloping simulations, the
retractions of the first hindlimb and the first forelimb to strike
the ground were separated by fixed time intervals; the second
hindlimb began to retract when the first hindlimb became
perpendicular with the trunk, and similarly, the second
forelimb began to retract when the first forelimb became
perpendicular with the trunk.

Setting model parameters

The first constraint on the model parameters was that
simulations were required to be smooth and periodic. For each
gait (trotting and galloping) and for each virtual animal, we
adjusted the model parameters to achieve this condition.
Periodicity was defined as no significant change (P<0.05) in the
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animal’s maximum aerial height, forward speed and body pitch
over 20 running cycles. Running simulations were started with
the animal off the ground. Initial conditions were defined for the
position and velocity of the center of mass and the individual
body segments. When periodicity was satisfied, we found that
the simulation dynamics was insensitive to the initial conditions.
When periodicity was not satisfied, however, simulation
dynamics was found to be strongly dependent on the initial
conditions and, typically, a simulation run would become
unstable within only a few strides. For the small horse
simulations, we demonstrated the model’s capacity to recover
from an environmental disturbance: a sudden 20% reduction in
ground stiffness (Herr and McMahon, 2000, 2001). These
numerical experiments suggested that periodicity may be related
to dynamic stability, but in no way served as proof of stability.

Simulation experiments showed that the model’s cyclic
behavior was sensitive to variations (among simulation runs)
in fore- and hindlimb stiffnesses during stance, target limb-
retraction speeds, target limb angle and limb-retraction times.
To set these parameters, genetic algorithms were employed to
search the parameter space for smooth and periodic behavior.
Specifically, we performed a genetic-algorithm search
(Goldberg, 1989) to find these control values that minimized
the variance in step-to-step maximum aerial height, forward
speed and body pitch. The resulting ranges of parameter values
demonstrated the mechanical correlates of the periodicity
constraint. Most notably, we found that stance-limb stiffnesses
must exceed certain minimum values to keep the body upright
from stride to stride. Below this stiffness threshold, each virtual
animal could be stabilized, but only with active limbs, i.e.
when non-conservative forces were applied along the axis of
the limb (see Herr and McMahon, 2000).

The second constraint on model parameters was that the
overall leg stiffness (kleg) for each animal should match
published experimental data. It is important to point out that
kleg represents the stiffness of the entire musculoskeletal
system during stance (McMahon and Cheng, 1990; Farley et
al., 1993). The method for computing kleg is reviewed in the
next section. From the sets of parameter values that led to
smooth and periodic trotting, we chose the particular set of
values that led to the closest agreement between the computed
kleg and experimental kleg values from the literature. That is,
after stabilizing the model, we tuned the fore- and hindlimb
stiffnesses, target limb-retraction speeds, target limb angle and
retraction times to match the kleg data. The data are well-fitted
by the power law kleg=0.715M0.67, where M is the body mass
of the animal in kg, and the units of kleg are kN m–1 (Farley et
al., 1993). The same fore- and hindlimb stiffness values were
used in galloping and in trotting simulations.

For trotting and galloping simulations, we also adjusted
model parameters that had little effect on periodicity or overall
leg stiffness, such as neck and back stiffness during stance and
aerial-phase PD gains. Neck and back stiffnesses were selected
to minimize the number of oscillations in the trunk per stride,
and aerial PD gains (position and velocity) were set to position
the joints such that each joint moved to its target position

without overshoot. For all PD controllers, target velocities
were set to zero.

The ground was modeled with linear springs and dampers
in the vertical and horizontal directions to model the
viscoelastic properties of a natural running surface. Ground
stiffness was first set so that the limbs penetrated the ground
by a small amount when running (0.3 cm for the small horse
model). Increasing damping from zero then minimized
oscillations between the ground and foot.

Model outputs

The model’s outputs were computed from the dynamics of
each set of animal simulations as follows. For trotting animals,
leg stiffness was defined as kleg=F/∆l, where F is the peak vertical
ground-reaction force and ∆l is the compression of a virtual leg
spring, based on a spring-mass representation of the center of
mass as it rebounded from the ground (McMahon and Cheng,
1990; Farley et al., 1993). The spring compression was given by
∆l=∆y+L0(1–cosθ), where ∆y is the vertical displacement of the
center of mass during stance, θ=sin–1(utc/2L0) is the virtual-leg
angle from vertical at touchdown (or half the angle swept by the
leg during stance), tc is the foot-contact time per stride and L0 is
leg length. Vertical stiffness was defined as kvert=F/∆y and
described the center-of-mass mechanics of the stance phase in the
vertical direction.

In the model, these properties of overall stiffness depended on
the joint stiffnesses, target limb positions and target retraction
speeds. (The stiffnesses kleg and kvert are defined for symmetrical
gaits such as trotting, hopping and bipedal running, but they do
not describe the mechanics of galloping.) Cost of transport
(COT) was defined as the metabolic energy required to move a
unit mass over a unit distance (Taylor et al., 1970; Schmidt-
Nielsen, 1984). In the model, COT was computed from the
kinematics of the animal simulations (the third assumption of
the model) based on the empirical rule COT=C0/utc, where u is
forward speed and C0 (C0=1.8Jkg–1) was a size- and speed-
independent cost coefficient (Kram and Taylor, 1990). In this
work, the empirical rule of Kram and Taylor served as a bridge
between model mechanics and energetics.

For galloping, we calculated stride frequency, hindlimb
excursion angle, forelimb duty factor, peak vertical ground-
reaction force and the cost of transport. These output variables
depended primarily on limb stiffness (fore- and hindlimb) and
the parameter values (target limb positions, target limb speeds,
retraction times) resulting from the genetic-algorithm search
for smooth and periodic solutions. We set the cost coefficient
C0 to 1.8 J kg–1 (as in trotting), the forward speed u to the
minimum galloping speed (trot–gallop transition speed;
Table 1) and tc to the mean contact time predicted from the
galloping simulations.

Results
Mechanical and kinematic control parameters

The model’s parameters provided a theoretical glimpse into
the workings of our virtual animals. After enforcing the
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constraint of stride-to-stride smoothness and periodicity, we
discovered that, in general, forelimb stiffnesses needed to be
greater than hindlimb stiffnesses by an average of 64 % (see
Table 1). This is perhaps accounted for by the fact that the head
and neck masses were a significant fraction of total body mass
(13 % on average), requiring that the forelimbs be stiffer than
the hindlimbs to keep the animal upright from stride to stride.
We also found that the hindlimb target speeds needed to be
greater than the forelimb target speeds by an average of 31 %
for trotting and 32 % for galloping. With this model control,
smooth and periodic solutions were found without the use of
pitch orientation as a sensory input; the virtual animals ran
without sensory knowledge of absolute body orientation.

Trotting performance

In this section, we compare the model predictions for trotting
with experimental data. The model’s leg stiffness (kleg) was
constrained to match published data (Farley et al., 1993), as
described in Materials and methods. This constraint, together
with the requirement for smooth and periodic trotting solutions,
led to predictions of vertical stiffness, limb angle, peak force and
the cost of transport versusbody mass (Fig. 2). Least-squares
regression lines were fitted to the simulation results (filled circles,

N=6) and compared with experimental data (open circles). The
linear regressions (with units of the variables as plotted) are:
vertical stiffness (kvert=3.2M0.61, r2=0.98); limb angle from the
vertical at touchdown (θ=38M–0.081, r2=0.91); peak vertical
ground-reaction force (F=24M0.96, r2=0.99); and cost of transport
(COT=12M–0.33, r2=0.99). Least-squares regression lines fitted
to the experimental data of Farley et al. (1993) and Taylor et
al. (1970, 1982) are kvert=2.64M0.61±0.10, θ=34.35M–0.034±0.092,
F=30.1M0.97±0.14; and COT=10M–0.36±0.09, where the
uncertainties are standard errors on the slope. We conclude that
the model predictions for trotting are in quantitative agreement
with published experimental data on mechanical and energetic
properties versussize.

Galloping performance

In this section, we compare the model predictions for
galloping with experimental data. With the same values for
fore- and hindlimb stiffness as used in the trotting simulations,
the constraint of stride-to-stride smoothness and periodicity led
to predictions of stride frequency, limb excursion angle, duty
factor and peak vertical ground-reaction force (Fig. 3). Least-
squares regression lines were fitted to the simulation results
(filled circles, N=6) and compared with experimental data
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(open circles). The linear regressions are: stride frequency
(fS), in cycles per minute (fS=282M–0.13, r2=0.96); hindlimb
excursion angle (α) (α=68M–0.06, r2=0.77); forelimb duty
factor (DF) (DF=34M0.018, r2=0.45) and peak vertical force (F)

per body weight (F/Mg=2.2M0.011, r2=0.43). Least-squares
regression lines fitted to the experimental data are
fS=269M–0.14±0.01, α=66M–0.07±0.01, DF=34M–0.03±0.02 and
F/(Mg)=2M0.04±0.03, where the uncertainties are standard errors
on the slope. We conclude that the model predictions of
galloping mechanics versussize at the minimum galloping
speed are generally in quantitative agreement with published
experimental data.

The energetic predictions for galloping are also in agreement
with experimental animal data. A least-squares regression line
for the model’s cost-of-transport (COT) values versus
mass plotted on double logarithmic coordinates gives
COT=14M–0.36 (r2=0.95, N=6). This model prediction is in
agreement with the cost of transport allometric equation
COT=14.6M–0.37±0.1, adapted with permission from Heglund
and Taylor (1988). The uncertainties are 95 % confidence
limits for the slope.

Discussion
Overview

In this paper, we hypothesized that a single, integrative model
of mechanics, control and energetics could predict how some
well-known features of running would change with size in
mammalian quadrupeds. To test the hypothesis, we applied
biologically plausible strategies of animal movement to six
morphologically realistic virtual animals spanning nearly three
orders of magnitude in body size. We compared the model
dynamics in trotting and galloping simulations with
experimental data to test the model assumptions for internal
consistency. Parameters were not tuned to match the data set
used to test the model. Rather, the model parameters were
selected for smooth and periodic running solutions, and the
overall leg stiffness of each virtual animal was constrained by
published data (Farley et al., 1993). We found model predictions
to be in agreement with the data not only for mechanical
variables but also for the rate of energy metabolism, providing
support for our hypothesis. Moreover, we demonstrated internal
consistency between biological values of leg stiffness, the rule
of Kram and Taylor (1990) for metabolic cost of transport and
a relatively simple cycle-to-cycle control scheme.

Significance of model control

It is important to point out that the overall behavior of the
model was strongly dependent on the methods used for pitch
and speed control. In investigations of alternative control
schemes, we found strategies that kept the virtual animals
upright from stride to stride but with features grossly
inconsistent with biological data. For example, when forward
speed was sustained by actively extending the contact limbs
beyond their equilibrium lengths at the end of stance (by
applying non-conservative forces about the knee and elbow),
the vertical oscillations of the body increased dramatically and
the gait resembled a bound (see Hildebrand, 1976) rather than
a trot or gallop, with a vertical stiffness much smaller than
those measured in animals (see Fig. 2A).
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In developing the model, such alternative strategies were
rejected in favor of more biologically plausible control
methods (Herr and McMahon, 2000). Given the realistic
morphology of the virtual animals, the control features
responsible for their realistic dynamics were passive springy
legs and active wheel-like limb control. Here, the axial limb
response (fore- and hindlimbs) was passive and spring-like
throughout stance, while active hip and shoulder torques
rotated each stance limb such that the tangential velocity
component of each foot was sustained like the rim of a steadily
rolling wheel. The model’s requirements for sensory
information (e.g. joint positions and velocities) and active
joint-torque magnitudes (e.g. 120 N m at the hip and shoulder
of the small horse) did not exceed the reported capabilities of
mammals (Eyzaguirre and Fidone, 1975; Roberts, 1995; Herr
and McMahon, 2000, 2001). The model’s control thus
represents a set of simple, plausible rules by which running
quadrupeds might operate.

Implications for running mechanics and motor control

For both trotting and galloping, the constraint of smooth and
periodic solutions led to the selection of hindlimb target speeds
that were greater than the forward speed of running and of
forelimb target speeds that were less than the forward speed
(Table 1). This relationship between the target speeds caused
the hip generally to apply a thrusting torque (supplying
mechanical energy) and the shoulder a braking torque
(dissipating energy). When the forelimb speed was greater than
the hindlimb speed, the model was unstable. This result
suggests that thrusting hip torques and braking shoulder
torques may be crucial for dynamic stability. This strategy is
qualitatively consistent with ground-force measurements in
running dogs (Lee et al., 1999; Herr and McMahon, 2000).

The size-dependencies of stride frequency and excursion
angle in galloping (Fig. 3) have previously been explained as
mechanical constraints of natural frequencies of vibration and
muscle force acting across a joint, respectively (McMahon,
1975). The present model provides an alternative explanation.
Our results suggest that biological values of stride frequency
and excursion angle may arise from interactions between
motor control and stride-to-stride dynamics. We found that the
timing of limb movements was crucial to stability and
changed with the size of the model, suggesting that neural
pattern generators that control limb movements might be
tuned for stability as a function of body size. The emergent
model behaviors of duty factor and normalized peak force
were relatively invariant with size, which is consistent with
experimental data (Fig. 3C). The agreement between model
predictions and experimental data for both trotting and
galloping supports the idea that, in addition to mechanical
considerations, stride-to-stride periodicity constrains scale
effects in running quadrupeds.

Irrespective of size, animals must sustain their forward
speed and remain balanced while running. However, it is not
known whether different control strategies are required to
stabilize animals of different size or whether species have

evolved with altogether different strategies for optimizing
running economy and/or speed. In this paper, a single control
strategy was used to stabilize six virtual animals spanning
nearly three orders of magnitude in body size. This control-
independence suggests that scale effects in quadrupedal
running are attributable primarily to morphological differences
among animals, not to fundamental differences in how they
remain balanced from stride to stride. As animals get larger,
the basic control scheme required to maintain stability need not
change, but the stiffness and timing of limb movements change
on the basis of the morphology of the limbs, trunk and head.
This result supports the idea that the natural dynamics of the
body simplify the control of locomotion (Raibert and Hodgins,
1993; Kubow and Full, 1999).

For each virtual animal, smooth and periodic trotting
solutions were found when we increased kleg or stride
frequency above the biological range, with the disadvantage
of increasing the predicted cost of transport (Herr and
McMahon, 2000). However, when we decreased kleg or stride
frequency below the biological range, smooth and periodic
solutions could not be found. We speculate that the biological
range of kleg may represent a minimum-stiffness boundary for
stability. At these stiffness values, the predicted cost of
transport, which is in agreement with the data (Fig. 2D), may
represent the lowest metabolic energy level within the region
of stiffness where stability can be achieved with passive,
spring-like legs. This explanation of biological stiffness
values seems plausible, given the evidence that energy
consumption is minimized by gait transitions in humans and
horses (Margaria, 1976; Hoyt and Taylor, 1981), and warrants
further investigation.

Concluding remarks

Perhaps the simplest summary of our findings is that the
present model, constrained by periodicity and stiffness and
incorporating empirical energetics, predicted a substantial data
set across size on the basis of simple mechanical and control
features. Further development of the model may include
an investigation of the determinants of leg stiffness, the
incorporation of virtual muscle mechanics to derive energetic
properties from first principles, the representation of limb
postures to test whether postural variations with size
(Biewener, 1983, 1989) are constrained by stability and
extension to bipedal running. Before this work, it had not been
shown that the size-dependent properties of quadrupedal
running could be unified within a single theoretical framework.
In the study of body size to understand locomotory function,
we believe that identifying mechanisms critical to stability and
metabolic economy can lead to simple ways to think about how
animals operate.
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